Quantum Technologies: Legal and Policy Issues

Chris Hoofnagle

UC Berkeley

for Professor Wenting Zheng's Cryptosystems

Hoofnagle LAW AND POLICY for the QUANTUM AGE **LAW AND** LAW AN **POLICY** fo POLICY IUAUQ QUAN AGE AGE Chris Jay Chris Jay Hoofnagle Hoofnagle Simson L. Simson L. Garfinkel Garfinkel "This book is broad, deep, and accessible... Highly recommended!" ADAM SHOSTACK, author CAMBRIDGE IN YAW 21 UNIVERSITY PRESS CAMBRIDGE

1

Background & roadmap

Joint work with Simson Garfinkel

IN PRODUCTION! *Law and Policy for the Quantum Age* (Cambridge University Press 2021)

Quantum technologies (QT) use quantum effects to provide utility---

Metrology & sensing

Computing

Communications

Scenarios

Policy issues

The problem of technology "novelty" framing

Quantum Technology: why now?

China & EU investment

Leapfrog U.S.

Countermeasures for Signals Intelligence (SIGINT) <u>Next-gen tech industry</u>

Electronic warfare / Measurement & Signature Intelligence (MASINT)

Tech fundamentals

Even commercial products can produce, control, measure quantum-level phenomena Some QTs do not require supercooling

THORLADS

Products Home Rapid Order Services

A Products Home / Thorlabs Discovery - Educational Products and Kits / Quantum Eraser Demonstration Kit

Create an Account | Log Ir

The Company

Quantum Eraser Demonstration Kit

- Designed for Education,
- Demonstration, and Classroom Use
- Easy-to-Use Kits Include Components Plus Educational Materials

Quantis RNG OEM component

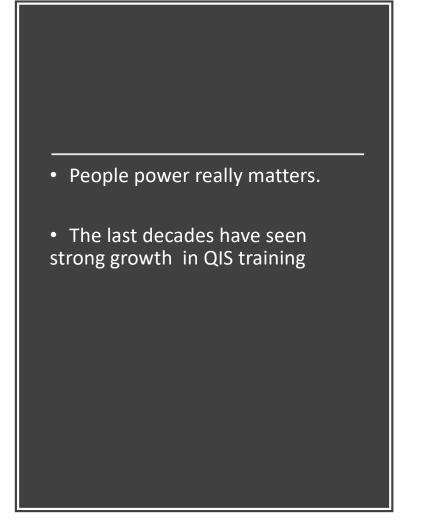
- > Highly resilient to environmental perturbations
- > Designed for mounting on PCB for embedded systems
- > Instant entropy with high bit-rate of 4Mbits/sec

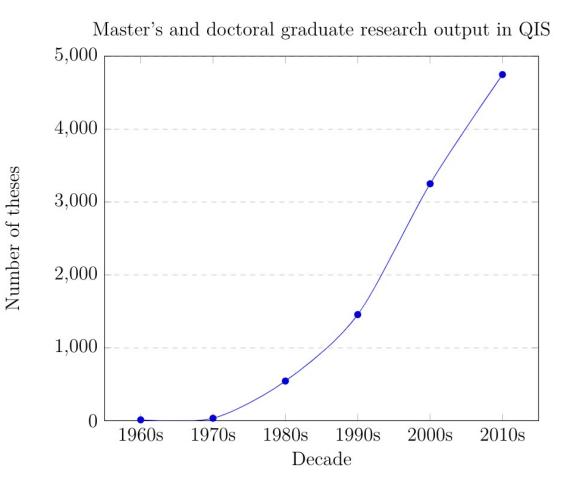
QT: why now?

Corporations—about 200 public & private with significant QT (Pitchbook, Cruchbase)

- Fear that QTs are "winner take all"
- Major challenges
 - Export controls & secrecy
 - Path to profit
 - Spotting quantum fluff
 - Grooming trained workforce

U.S. Govt


 Strong industrial policy approach promising billions of investment through the National Labs (thus basic & applied research, secrecy)
 + export controls


• Nations are funding quantum technology research

• This is a lower-bound estimate of the number of published papers in quantum technology funded by different nation states.

F	Estimated Number
Nation	of Papers
China	8 006
US	6071
European Union including national support	5819
EU alone	2520
Japan	1491
Canada	1425
UK	894
Germany	785
Nongovernmental Organizations (Foundations)	618
Australia	598
Brazil	518
Spain	455
Russia	383
France	280
Austria	253
Korea	249
Papers with no data	4641
Total	35006

Table 8.1: Support for publications on quantum technologies

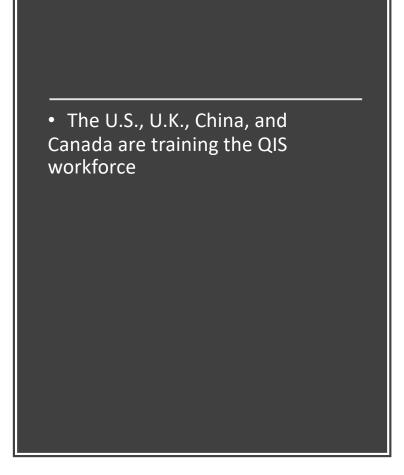


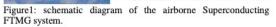
Table 8.11: Institutions more than 100 dissertations and theses were published on QIS

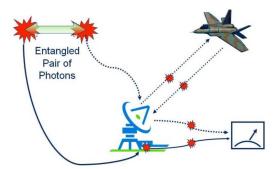
Institution Name	Number of Works
Massachusetts Institute of Technology	253
University of California, Berkeley	225
University of Oxford	198
University of Illinois at Urbana-Champaign	176
Purdue University	165
University of California, Santa Barbara	159
Princeton University	156
University of Maryland, College Park	156
Harvard University	148
University of Cambridge	144
University of Toronto	138
Stanford University	121
Northwestern University	118
University of Michigan	117
Cornell University	111
California Institute of Technology	110
Tsinghua University	110
Imperial College London	109
The University of Texas at Austin	108
University of Rochester	105
University of Colorado at Boulder	103
The University of Wisconsin - Madison	101
v	

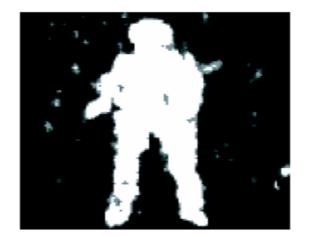
Quantum sensing

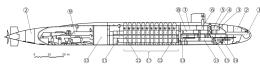
Oldest category of QT

Magnetic, gravimetric, photonics


Precursor for quantum computing


We argue that quantum sensing is the "killer app" of QTs


- Not just improvements; **new capabilities** Stealthy sensing Medical EW countermeasures, PNT Single-quanta radio
- Quantum radar/sonar
- Ghost imaging


Mining

Quantum computing

State of the science is still in research device status

QCs **do not** consider all possible solutions!

Instead, QCs come to solutions faster by taking fewer steps

Some speedups are exponential (Shor factoring)

Some are quadratic (Grover search) Cryptanalysis a long way off

Simulation in chemistry, materials science is the "killer app"

Feynman vision for QC Winner take all Promising for society Less legible, therefore not hyped

China's "father of quantum," Jian-Wei Pan recently demonstrated quantum *advantage* with the Jiuzhang device. Jiuzhang is a complex (25 source) interferometer, showing the link between quantum *sensing* and quantum *computing*

Contrary to all the news...QCs will not be encryption killers

Attackers need to have the data, know the algo, have time to make the attack + large QC. ∴ total confidentiality collapse is impossible.

Not an economically productive use of QCs & can be regulated

Govs will focus on key value: certificates

Only some encryption is vulnerable

There are numerous countermeasures:

Data at rest: AES/SHA-256

Password compromise: change your passwords

Post-quantum approaches

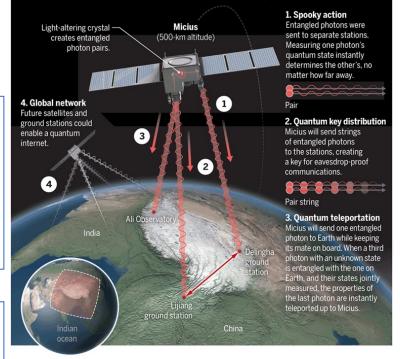
, arroub r				Quantum				
				Algorithm	#		Time	Quantum-
				Expected to	Logical	# Physical	Required to	Resilient
Cryptos		Key	Security	Defeat	Qubits	Qubits	Break	Replacement
ystem	Category	Size	Parameter	Cryptosystem	Required	Required ^a	System ^b	Strategies
AES-	Symmetric	128	128	Grover's	2,953	4.61×10^{6}	2.61×10^{12}	
GCM	encryption	192	192	algorithm	4,449	1.68×10^{7}	yrs	
[5]	, P	256	256		6,681	3.36×10^{7}	1.97×10^{22}	
r- 1					-,		yrs	
							2.29×10^{32}	
							yrs	
RSA [6]	Asymmetric	1024	80	Shor's	2,290	2.56×10^{6}	3.58 hours	Move to
	encryption	2048	112	algorithm	4,338	6.2×10^{6}	28.63 hours	NIST-selected
		4096	128		8,434	1.47×10^{7}	229 hours	PQC
								algorithm
								when
								available
ECC	Asymmetric	256	128	Shor's	2,330	3.21×10^{6}	10.5 hours	Move to
Discrete	encryption	386	192	algorithm	3,484	5.01×10^{6}	37.67 hours	NIST-selected
-log		512	256		4,719	7.81×10^{6}	95 hours	PQC
problem ^c								algorithm
[7,8]								when
								available
SHA256	Bitcoin	N/A	72	Grover's	2,403	2.23×10^{6}	$1.8 imes 10^4$	
[9]	mining			Algorithm			years	
PBKDF	Password	N/A	66	Grover's	2,403	2.23×10^{6}	2.3×10^{7}	Move away
2 with	hashing			algorithm			years	from
10,000								password-
iteration								based
\mathbf{s}^d								authentication

TABLE 4.1 Literature-Reported Estimates of Quantum Resilience for Current Cryptosystems, under Various Assumptions of Error Rates and Error-Correcting Codes

National Academies 2019

Quantum communications

Quantum-enhanced classical encryption

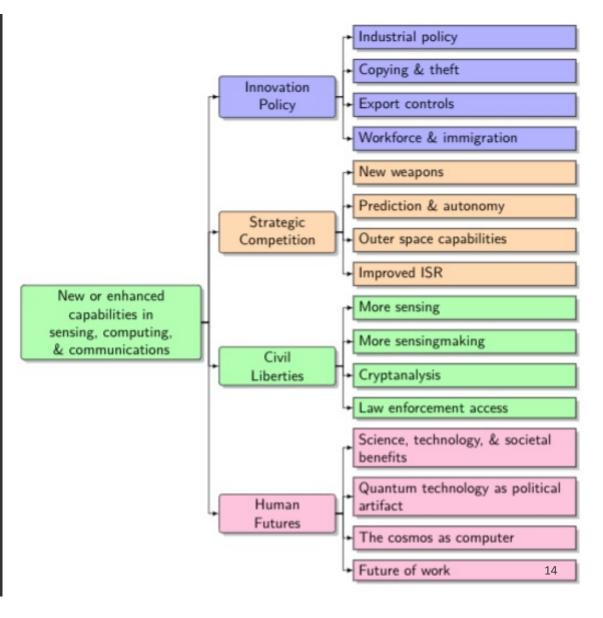

- Uses quantum effects to enhance existing systems
 - Quantum random number generation (QRNG)
 - Quantum key distribution (QKD)
 - Consequential development---Jian-Wei Pan's satellite QKD (now over 150 users, 4,600 km network)

Quantum networking/internet

- Uses quantum effects to communicate
- Truly end-to-end (no network "trust"):
 - Detect eavesdroppers
 - Strategic surprise: Deny adversaries access to metadata
- Potential to connect small quantum computers

Quantum leaps

China's Micius satellite, launched in August 2016, has now validated across a record 1200 kilometers the "spooky action" that Albert Einstein abhorred (1). The team is planning other quantum tricks (2–4).



The state of the science published research in Q computing & in Q communication come from China---Jian-Wei Pan & Chao-Yang Lu from USTC-Hefei¹²

Policy scenarios

Government superior and dominant scenario
Could be China (ahead in 2 categories of state-of-the-science innovation)
Example of strategic surprise
Gov't has Q encryption but also cryptanalysis powers
Issue of "key value"
Public/private utopia scenario: most likely scenario for sensing
Example of strategic surprise: authoritarian high modernism (Scott, Seeing Like a State)
E.g. smart cities, planned economies
Public/private, East/West bloc scenario
Quantum winter: This is a likely scenario for computing

Policy Issues

LAWAN POLICY POLICY GUANT GUANT Chris Jay Hoofnagle Simson L.

"This book is broad, deep, and accessible... Highly recommended!" ADAM SHOSTACK, author

CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

THIS WAY UP

LAW AN POLICY QUANT AGE

Chris Jay Hoofnagle Simson L. Garfinkel

Hoofnagle LAW AND POLICY for the QUANTUM AGE

CAMBRIDGE

Thank you 😳

https://the-quantum-age.com/