Garbled circuits
Recap

• Federated learning
 • Private summation of private model updates
 • Arithmetic secret sharing, Shamir secret sharing
• Password breach alert
 • Specialized private set intersection (PSI)
 • Oblivious PRF, DDH assumption
Garbled circuits

- Generic computation using a circuit-based computation model
 - Each party inputs a set of bits
 - Circuit made up of XOR and AND gates
 - Each gate has two input wire, and one output wire
Garbled circuits definitions

- Garble($1^n, F$) → (GC_F, e, d): n is the security parameter, F is an input function to be garbled (represented as a boolean circuit), GC_F represents the garbled circuit for function F, e is the encoding information, and d is the decoding information

- Encode(e, x) → E_x: k is a key, and x is corresponding input, E_x is the corresponding garbled input

- Eval(GC_F, E_x) → E_y: on input a garbled circuit GC_F and an encrypted input E_x, produce a garbled output E_y

- Decode(d, E_y) → $F(x)$: using decoding information d and garbled output E_y, output $y = F(x)$
Garbled circuits

- Alice & Bob want to figure out whether they should collaborate on a project, but doesn’t want to reveal their own input

- Alice: x, Bob: y; want to compute $x \land y$ (circuit with a single gate)

- Two parties: Garbler (Alice) & Evaluator (Bob)
 - Garbler generates the circuit
 - Evaluator evaluates the circuit

- Basic idea: encode the truth table of a gate using encryption
Garbled circuits

• Alice & Bob want to figure out whether they should collaborate on a project, but doesn’t want to reveal their own input

• Alice: x, Bob: y; want to compute $x \land y$ (circuit with a single gate)

• Two parties: Garbler (Alice) & Evaluator (Bob)
 • Garbler generates the circuit
 • Evaluator evaluates the circuit

• Basic idea: encode the truth table of a gate using encryption

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$x \land y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Garbled circuits: Garbler

- Let H be a key derivation function
- Pick four random labels: $W^0_x, W^1_x, W^0_y, W^1_y$, which correspond to the four possible values for x and y
Garbled circuits: Garbler

- Let H be a key derivation function.
- Pick four random labels: W_x^0, W_x^1, W_y^0, W_y^1, which correspond to the four possible values for x and y.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$x \land y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

![Diagram of AND gate with random labels](image-url)
Garbled circuits: Garbler

- Let H be a key derivation function
- Pick four random labels: $W^0_x, W^1_x, W^0_y, W^1_y$, which correspond to the four possible values for x and y
- For each row
 - Use H to derive a key using the corresponding labels
 - Encrypt the content

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$x \land y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Garbled circuits: Garbler

- Let H be a key derivation function.
- Pick four random labels: $W^0_x, W^1_x, W^0_y, W^1_y$, which correspond to the four possible values for x and y.
- For each row:
 - Use H to derive a key using the corresponding labels.
 - Encrypt the result.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$x \land y$</th>
<th>Enc($H(W^0_x, W^0_y), 0$)</th>
<th>Enc($H(W^0_x, W^1_y), 0$)</th>
<th>Enc($H(W^1_x, W^0_y), 0$)</th>
<th>Enc($H(W^1_x, W^1_y), 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Garbled circuits: Garbler

- Let H be a key derivation function.
- Pick four random labels: $W^0_x, W^1_x, W^0_y, W^1_y$, which correspond to the four possible values for x and y.
- For each row:
 - Use H to derive a key using the corresponding labels.
 - Encrypt the result.
 - Randomly permute the rows.
Garbled circuits: Garbler

- Let H be a key derivation function.
- Pick four random labels: $W_x^0, W_x^1, W_y^0, W_y^1$, which correspond to the four possible values for x and y.
- For each row:
 - Use H to derive a key using the corresponding labels.
 - Encrypt the result.
 - Randomly permute the rows.
Garbled circuits: Evaluator

- In order to evaluate the gate, needs to know the correct label for each input wire.
- Alice the Garbler can send her input wire label over directly — nothing is revealed since it’s random.
- What about Bob’s value?
 - Alice should give the right label, without learning Bob’s input.
 - Bob should only learn one label, not two.
- Use **Oblivious Transfer**!

![Diagram of Garbled circuits: Evaluator](image)
Garbled circuits: Evaluator

- In order to evaluate the gate, needs to know the correct label for each input wire.
- Alice the Garbler can send her input wire label over directly — nothing is revealed since it’s random.
- What about Bob’s value?
 - Alice should give the right label, without learning Bob’s input.
 - Bob should only learn one label, not two.
 - Use **Oblivious Transfer**!

\[
\begin{align*}
W^0_y, W^1_y & \rightarrow \text{OT} \quad y = 1 \\
W^1_y & \leftarrow \text{OT}
\end{align*}
\]

Garbler doesn’t learn \(y\)
Evaluator doesn’t learn \(W^0_y\)
Garbled circuits: Evaluator

- In order to evaluate the gate, needs to know the correct label for each input wire.
- Alice the Garbler can send her input wire label over directly — nothing is revealed since it’s random.
- What about Bob’s value?
 - Alice should give the right label, without learning Bob’s input.
 - Bob should only learn one label, not two.
- Use Oblivious Transfer!
- Use H to generate key, decrypt all four entries using key; if succeeds, output the result.
Garbled circuits

- Extending to a circuit requires encrypting labels
- **Security**
 - Semihonest construction (otherwise garbler could choose an incorrect circuit, which requires other techniques)
 - Garbler is corrupted: security of OT
 - Evaluator is corrupted:
 - Labels are random
 - Permutation ensures no information is leaked from the organization of the circuit
 - Only one label is learned per wire
Today’s reading: SecureML
Next class

• 2-party, convolutional neural network inference

• Setup:
 • Server provides model
 • Client provides input
 • Client wants to run inference on the model without revealing the input; server does not want to reveal the model

• Techniques: HE (linear) & GC (non-linear)