
Maliciously secure MPC

Garbled circuits
• Let be a key derivation function

• Pick four random labels: , which
correspond to the four possible values for and

• For each row

• Use to derive a key using the corresponding
labels

• Encrypt the result

• Randomly permute the rows

H

W0
x , W1

x , W0
y , W1

y
x y

H

W0
x , W1

x W0
y , W1

y

x ∧ y

AND

Enc(H(W0
x , W0

y),0)
Enc(H(W0

x , W1
y),0)

Enc(H(W1
x , W0

y),0)
Enc(H(W1

x , W1
y),1)

Malicious adversary
• What can a malicious adversary do?

• Give fake inputs (not something MPC can handle)

• Give inconsistent inputs

• Execute incorrect computation

• Refuse to release the final result (cannot always be handled)

Maliciously secure GC via cut-and-choose

• is the garbler, is the evaluator

• Problem: can generate an incorrect garbled circuit (perhaps an identity
circuit that embeds ’s input!)

• Idea:

• generates many circuits

• asks to open some of them (cut), then evaluates the rest (choose)

• takes the majority output

• Why not abort if the outputs are inconsistent?

• Insecure! The incorrect circuits can be selectively incorrect based on ’s
input, e.g., gives wrong answer if the first bit is 1

P0 P1

P0
P1

P0

P1 P0

P1

P1

Maliciously secure GC via cut-and-choose
• Optimal choice in cut-and-choose

• checks circuits and opens circuits

• Probability that cheats without getting caught:

• ’s best strategy is to construct bad circuits

• Some concrete numbers

• LP08: if open circuits, then probability of failure, need 128 to
achieve security

• SS11: open around 60% circuits, need 125 circuits for security

P1 e (s − e)

P0 (s − b
s − e)/(s

s − e)
P0 b = ⌊e/2⌋ + 1

s/2 2−0.311s

2−40

2−40

https://eprint.iacr.org/2011/533.pdf
https://eprint.iacr.org/2008/049.pdf
https://eprint.iacr.org/2011/533.pdf

Problem: input consistency
• Ensuring ’s input is easy: batches the corresponding labels across

circuits, run OT once per ’s input bit, for the entire batch

• But could give inconsistent input labels across different circuits

• Primitives:

• Commitment : commit to a chosen value; hiding & binding

• Universal hash function: A collection of has functions
 is universal if for any distinct , the probability

that a uniformly chosen satisfies is at most

P1 P0
P1

P0

Com(x)

ℋ = {h |h : A → B} x, y
h h(x) = h(y) 1/ |B |

Input consistency check
• Input consistency check protocol:

• commits to input labels where are the inputs
to the -th circuit and sends commitments to

• and jointly and uniformly pick

• constructs copies of the circuit, encoding both the function and an auxiliary
circuit that computes

• checks a random subset of the circuits; if check passes, decommits input
values for the rest of the circuit

• first evaluates the auxiliary circuits. If the hashes are consistent, then evaluate
the remaining objective circuits

P0 x1, x2, ⋯, xs xj = Encode(x | |r)
j P1

P0 P1 h ∈ ℋ

P0 s
h(xj)

P1 P0

P1

https://shelat.ccis.neu.edu/dl/ss13-yao.pdf

Input consistency check
• Security: how can ’s inputs be inconsistent?

• Auxiliary circuits are faulty -> cut-and-choose ensures non-faulty
circuits

• has found a collision to the hash function -> security by definition of
hash function

• can break the commitment scheme -> assumed to be
binding

• The randomness input by ensures hiding (via left-over-hash lemma)

P0

P0

P0 Com(x)

r P0

Problem: selective abort
• cheats by providing incorrect labels in OT

• Select inputs to OT such that when ’s first bit is 1, then it will get garbage label,
causing an abort since the circuit cannot be evaluated

• Idea: encode ’s true input into an alternative input such that the joint distribution of
a subset of the input is uniform (independent of ’s true input)

• Simple solution: secret share each input bit into random bits (total bits)

• Fancier solution (fewer generated bits):

• Given , compute new input such that where is k-probe-resistant

• Can instantiate with Reed-Solomon code

P0

P1

P1
P1

s ns

y ȳ y = M ⋅ ȳ M

https://eprint.iacr.org/2008/049.pdf
https://eprint.iacr.org/2008/049.pdf

Today’s reading: maliciously
secure collaborative analytics

Next class: guest lecture
Title: Law and Policy for the Quantum Age

Abstract: Quantum technologies are so different from our conventional intuition that they seem
like science fiction—yet some quantum technologies can be commercially purchased today,
and more are just around the corner, posing profound policy issues. For example, quantum
sensing arrays might someday be trained to recognize weapons or sniff the molecules of
contraband, even if concealed, or detect guns in private homes by measuring electromagnetic
or gravitational fields through roofs. Quantum algorithms will speed up the process of cracking
the encryption that protects our communications. Quantum simulation will have tremendous
benefits for the environment, but these same techniques could be used to engineer more
powerful biological, chemical, synthetic, conventional, and even genetic weapons. Berkeley
Professor Chris Hoofnagle, who has a forthcoming book on The Quantum Age with Simson
Garfinkel (Cambridge Univ. Press 2021), will describe the state of the science in quantum
technologies and consider the policy consequences of the quantum age.

