Differential privacy

Some material taken from here, here
Final project checkins

• Schedule a 45 min meeting with me next week

• Look on CMU Google calendar & send me an invite!
Secure multiparty computation

- Allows multiple non-colluding parties to compute on their joint data, without revealing their input data or any intermediate results

- One big drawback: *final result* usually needs to be revealed to all parties

- What to do if you must release some result to some untrusted entities?
Differential privacy

- How to publish data about someone while protecting their privacy?

- Idea: add randomness/noise to the final result so that the exact value is not revealed
Anyone who sees the output (e.g., data scientist) will learn about an individual user's data.
DP definitions

• DP promises to protect an individual from any additional harm they might face due to their data being included in a database

• Might still be harmed by the final result, but their decision to participate shouldn’t increase the harm

• Smoking causes cancer: result will increase insurance cost of Alice, but impact on Alice is independent of whether she participated in the study

• A mechanism A is ϵ-differentially private if for all databases D_1 and D_2 which differ in one individual, $P[A(D_1) = O] \leq e^\epsilon \cdot P[A(D_2) = O]$, for all values of O

• Output of the process should be similar if you change one individual

• ϵ captures the privacy-utility tradeoff
Randomized response

• How to survey how many people are illegal drug users?
 • Ask them directly, they might lie to you
• Why not add noise to their responses? Each person will
 • Flip a coin
 • If heads, then flip a second coin and respond “Yes” if heads, “No” if tails
 • If tails, respond truthfully
• Provides plausible deniability - even if answer is “Yes”, it might have been offered because first & second coins were both heads
Randomized response

• **Theorem:** The randomized response described is ϵ-differentially private, where $e^\epsilon = 3$ ($\epsilon \approx 1.1$).

• **Proof:** Fix a single individual. With 50% probability they will answer truthfully, and 50% probability they will answer randomly.

 • Drug user: 75% chance to answer “Yes”; non-drug user: 25% chance to answer “Yes.”

 • $P[A(Yes) = Yes]/P[A(No) = Yes] = 0.75/0.25 = 3$
Some properties of DP

• Privacy loss is quantified
 • $\epsilon = 0$ means perfect privacy; lower = better privacy but worse utility
• DP is immune to post processing: a data analyst without additional knowledge about the private database cannot compute a function of the output of a DP algorithm and make it less private
• Composition
 • Suppose two algorithms A and B are ϵ-differentially private
 • Publishing the result of both is 2ϵ-differentially private (two algorithms are independent so they have their own randomness)
• Privacy budget
 • One individual is in C statistics
 • If each release is ϵ_i-differentially private, then overall release is ϵ-differentially private if $\sum_i \epsilon_i = \epsilon$
DP in the real world

• Apple uses DP for collecting telemetry data on iOS and MacOS
 • 2 submissions per day per user
 • \(\epsilon = 8 \) for each submission

• Microsoft collects number of minutes that Windows 10 users use in each app
 • \(\epsilon = 0.7 \), once every 6 hours
Today: RAPPOR
Next time: DP in ML system

- So far we’ve seen randomized response mechanism, which is a *locally differently private* mechanism

- Another model: *global differential privacy*
 - A trusted entity has collected all of the data, and adds noise before releasing the result
 - **Census**
 - Google trains and release an ML model