
Zero-Knowledge Proofs

Material taken from here, here

https://inst.eecs.berkeley.edu/~cs276/fa20/slides/lec14.pdf
https://www.cs.princeton.edu/courses/archive/fall07/cos433/lec15.pdf

Classical Proofs
• The notion of a proof is basic to mathematics

• Proof is a static string that is written down somewhere and anyone can
verify

• Valid proof gives absolute certainty that the statement is true

π

Redefining proofs
• Proof redefined as a game between a

prover and a verifier

• Game can be interactive, where the

verifier asks questions and the prover
answers

• Further generalization to a probabilistic
proof system

• “Prove that I could prove it if I felt like it”

Graph isomorphism
• Two graphs and are isomorphic if there exists a matching between

their vertices so that two vertices are connected by an edge in if and
only if corresponding vertices are connected by an edge in

• Assumption: graph isomorphism is “hard” to solve

• Alice is prover, Bob is verifier

• Alice proves to Bob that and are isomorphic

• Classic proof: Alice gives Bob the isomorphism

• Bob knows 1) and are isomorphic 2) the isomorphism

G1 G2
G1

G2

G0 G1

G0 G1

ZK graph isomorphism proof

Alice produces a random graph such that it is
isomorphic to both and

Proof: , thus
and

If Alice can show both isomorphisms, then there exists
an isomorphism from to

H
G0 G1

H = γ0(G0), H = γ1(G1) G1 = γ−1
1 (γ0(G0))

σ = γ−1
1 γ0

G0 G1

ZK graph isomorphism proof

Send H

Send b R {0,1}

If , send

If , send

b = 0 γ0
b = 1 γ1 = γ0σ−1

Proof properties
• Completeness: a proof system is complete if you can prove all true

statements using it

• Previous scheme is complete as verifier will always accept if the prover

is proving a true statement

• Soundness: a proof system is sound if you can never prove false

statements using it

• If prover is trying to prove a false statement, then the verifier will reject

with overwhelming probability

• Repeat independent times gives probability of catching a
mistake

k 1 − 2−k

Proof properties
• Zero-knowledge: a cheating verifier “learns nothing” from the proof

• After an interactive proof, verifier knows

• Whether the statement is true

• A view of the interaction (transcript of messages + coins that the verifier
tossed)

• The view gives the verifier nothing he couldn’t have obtained on his own

Zero knowledge
• If the verifier’s view can be efficiently simulated so that “simulated views” and

“real views” are indistinguishable

• Simulator does not take any private input from an honest party

• Simulator :

1. Toss coin

2. If , choose random , set ; if , choose random ,

set

3. Feed to the verifier

4. If verifier outputs , then output

5. Otherwise, rewind and go to step 1 again

S
c

c = 0 γ0 H = γ0(G0) c = 1 γ1
H = γ1(G1)

H
b = c (H, c, γc)

Zero knowledge
• Simulator does not need to know

• If , then the view of the cheating verifier & view of the simulator are
the same: is a random graph

• Efficient simulation

• Since is a random graph, is independent of

• Probability that is

• Expected to halt after two attempts, so expected running time is

polynomial

• Sequential composition ensures ZK is preserved over many iterations

σ
b = c

H

H c b
b = c 1/2

Applications
• Maliciously secure MPC - enforce that a malicious party is following the

protocol

• Identification scheme: prove identities without revealing

• Verifiable computation: how to verify outsourced (cloud) computation

• Exciting recent developments in zkSNARKs (zero-knowledge Succinct
Non-interactive Arguments of Knowledge)

Today’s reading: AUDIT

Next time: guest lecture!
• Bryan Parno will talk about “An Early History of Verifiable Computation”

