Zero-Knowledge Proofs

Material taken from here, here

https://inst.eecs.berkeley.edu/~cs276/fa20/slides/lec14.pdf
https://www.cs.princeton.edu/courses/archive/fall07/cos433/lec15.pdf

Classical Proofs

 The notion of a proof is basic to mathematics

 Proof & is a static string that is written down somewhere and anyone can
verify

» Valid proof gives absolute certainty that the statement is true

Redefining proofs

* Proof redefined as a game between a
prover and a verifier

e Game can be interactive, where the
verifier asks questions and the prover
answers

* Further generalization to a probabilistic
proof system

 “Prove that | could prove it if | felt like it”

THE KNOWLEDGE COMPLEXITY OF
INTERACTIVE PROOF SYSTEMS*

SHAFI GOLDWASSERT, SILVIO MICALIT, AND CHARLES RACKOFF:

Abstract. Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem
is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it;
however, this seems to contain more knowledge than the single bit Hamiltonian/non-Hamiltonian

In this paper a computational complexity theory of the “knowledge™ contained in a proof is developed.
Zero-knowledge proofs are defined as those proofs that convey no additional knowledge other than the
correctness of the proposition in question. Examples of zero-knowledge proof systems are given for the
languages of quadratic residuosity and quadratic nonresiduosity. These are the first examples of zero

knowledge proofs for languages not known to be efficiently recognizable
Key words. cryptography, zero knowledge, interactive proofs, quadratic residues

AMS(MOS) subject classifications. 68Q15, 94A60

1. Introduction. It is often regarded that saying a language L is in NP (that is,
acceptable in nondeterministic polynomial time) is equivalent to saying that there is
a polynomial time “proof system™ for L. The proof system we have in mind is one
where on input x, a “prover’ creates a string «, and the “verifier” then computes on x
and « in time polynomial in the length of the binary representation of x to check that
v is indeed in L. It is reasonable to ask if there is a more general, and perhaps more
natural, notion of a polynomial time proof system. This paper proposes one such notion.

We will still allow the verifier only polynomial time and the prover arbitrary

computing power, but will now allow both parties to flip unbiased coins. The result

1 21 2calc coc el e woll® WITH cenlosax o el sveslanics lifes milf ausome oo o' lhoenrasl Llnwvroavar

Graph isomorphism

Two graphs G, and G, are isomorphic if there exists a matching between
their vertices so that two vertices are connected by an edge in G, if and
only if corresponding vertices are connected by an edge in G,

 Assumption: graph isomorphism is “hard” to solve

Alice is prover, Bob is verifier

Alice proves to Bob that G, and G, are isomorphic

Classic proof: Alice gives Bob the isomorphism

Bob knows 1) G, and G are isomorphic 2) the isomorphism

ZK graph isomorphism proof

Alice produces a random graph H such that it is
® isomorphic to both G and G, ®

Proof: H = yy(G,), H = 7,(G)), thus G| = y{ ' (75(Gy)) w
and o =]/1_1}/()

t

If Alice can show both isomorphisms, then there exists
an isomorphism from G, to G,

ZK graph isomorphism proof

Send H

—_—— - sa m—_—
®

Send b < {0,1)

t

if b =0, send y,

fb=1,sendy; = y,0"

——ms

Proof properties

« Completeness: a proof system is complete if you can prove all true
statements using it

* Previous scheme is complete as verifier will always accept if the prover
IS proving a true statement

 Soundness: a proof system is sound if you can never prove false
statements using it

* |f prover is trying to prove a false statement, then the verifier will reject
with overwhelming probabillity

» Repeat k independent times gives 1 — DK probability of catching a
mistake

Proof properties

 Zero-knowledge: a cheating verifier “learns nothing” from the proof
o After an interactive proof, verifier knows
 Whether the statement is true

* A view of the interaction (transcript of messages + coins that the verifier
tossed)

 The view gives the verifier nothing he couldn’t have obtained on his own

Zero knowledge

* |f the verifier’s view can be efficiently simulated so that “simulated views” and
“real views” are indistinguishable

 Simulator does not take any private input from an honest party
« Simulator S:

1. Toss coin ¢

2. If c = 0, choose random ¥, set H = y4(G,); if c = 1, choose random ¥,
set H = 7,(G)

3. Feed H to the verifier

4. If verifier outputs b = ¢, then output (H, ¢, 7,)
5. Otherwise, rewind and go to step 1 again

Zero knowledge

Simulator does not need to know o

If b = ¢, then the view of the cheating verifier & view of the simulator are
the same: H is a random graph

Efficient simulation
» Since H is a random graph, c is independent of b

e Probability that b = cis 1/2

 Expected to halt after two attempts, so expected running time is
polynomial

Seqguential composition ensures ZK is preserved over many iterations

Applications

Maliciously secure MPC - enforce that a malicious party is following the
protocol

ldentification scheme: prove identities without revealing
Verifiable computation: how to verify outsourced (cloud) computation

Exciting recent developments in zkSNARKSs (zero-knowledge Succinct
Non-interactive Arguments of Knowledge)

Today’s reading: AUDIT

Next time: guest lecture!

 Bryan Parno will talk about “An Early History of Verifiable Computation”

