Zero-Knowledge Proofs

Material taken from here, here
Classical Proofs

• The notion of a proof is basic to mathematics

• Proof π is a static string that is written down somewhere and anyone can verify

• Valid proof gives absolute certainty that the statement is true
Redefining proofs

• Proof redefined as a game between a prover and a verifier

• Game can be interactive, where the verifier asks questions and the prover answers

• Further generalization to a probabilistic proof system

• “Prove that I could prove it if I felt like it”
Graph isomorphism

- Two graphs G_1 and G_2 are isomorphic if there exists a matching between their vertices so that two vertices are connected by an edge in G_1 if and only if corresponding vertices are connected by an edge in G_2.
 - Assumption: graph isomorphism is “hard” to solve.
- Alice is prover, Bob is verifier.
- Alice proves to Bob that G_0 and G_1 are isomorphic.
- Classic proof: Alice gives Bob the isomorphism.
- Bob knows 1) G_0 and G_1 are isomorphic 2) the isomorphism.
Alice produces a random graph H such that it is isomorphic to both G_0 and G_1

Proof: $H = \gamma_0(G_0)$, $H = \gamma_1(G_1)$, thus $G_1 = \gamma_1^{-1}(\gamma_0(G_0))$

and $\sigma = \gamma_1^{-1}\gamma_0$

If Alice can show both isomorphisms, then there exists an isomorphism from G_0 to G_1
ZK graph isomorphism proof

Send H

Send $b \stackrel{R}{\leftarrow} \{0,1\}$

If $b = 0$, send γ_0
If $b = 1$, send $\gamma_1 = \gamma_0 \sigma^{-1}$
Proof properties

- **Completeness**: a proof system is complete if you can prove all true statements using it
 - Previous scheme is complete as verifier will always accept if the prover is proving a true statement

- **Soundness**: a proof system is sound if you can never prove false statements using it
 - If prover is trying to prove a false statement, then the verifier will reject with overwhelming probability
 - Repeat k independent times gives $1 - 2^{-k}$ probability of catching a mistake
Proof properties

- **Zero-knowledge:** a cheating verifier “learns nothing” from the proof

- After an interactive proof, verifier knows
 - Whether the statement is true
 - A view of the interaction (transcript of messages + coins that the verifier tossed)
 - The view gives the verifier nothing he couldn’t have obtained on his own
Zero knowledge

• If the verifier’s view can be efficiently simulated so that “simulated views” and “real views” are indistinguishable
• Simulator does not take any private input from an honest party
• Simulator S:
 1. Toss coin c
 2. If $c = 0$, choose random γ_0, set $H = \gamma_0(G_0)$; if $c = 1$, choose random γ_1, set $H = \gamma_1(G_1)$
 3. Feed H to the verifier
 4. If verifier outputs $b = c$, then output (H, c, γ_c)
 5. Otherwise, rewind and go to step 1 again
Zero knowledge

- Simulator does not need to know σ
- If $b = c$, then the view of the cheating verifier & view of the simulator are the same: H is a random graph
- Efficient simulation
 - Since H is a random graph, c is independent of b
 - Probability that $b = c$ is $1/2$
 - Expected to halt after two attempts, so expected running time is polynomial
- Sequential composition ensures ZK is preserved over many iterations
Applications

• Maliciously secure MPC - enforce that a malicious party is following the protocol

• Identification scheme: prove identities without revealing

• Verifiable computation: how to verify outsourced (cloud) computation

• Exciting recent developments in zkSNARKs (zero-knowledge Succinct Non-interactive Arguments of Knowledge)
Today’s reading: AUDIT
Next time: guest lecture!

• Bryan Parno will talk about “An Early History of Verifiable Computation”