Zero-Knowledge Proofs of Knowledge

Material taken from here, here, here
Redefining classical proofs

- Proof redefined as a game between a prover and a verifier
- Game can be **interactive**, where the verifier asks questions and the prover answers
- Further generalization to a **probabilistic** proof system
- **Zero-knowledge**: “Prove that I could prove it if I felt like it”
Proofs of knowledge

• In a regular ZK proof, the prover attempts to convince the verifier that some fact is true
 • “X is true”

• In a proof of knowledge, the prover attempts convince the verifier that it knows some secret information
 • “I know why X is true”

• Definition: An interactive proof system \((P, V)\) is a proof of knowledge for an NP relation \(R\) if there exists an efficient extractor \(E\) such that for any \(x\) and any prover \(P'\):
 \[
 Pr[w \leftarrow E(x) : (x, w) \in R] \geq Pr[\langle P', V \rangle(x) = 1] - \epsilon
 \]

 • \(w\) is the witness, \(\epsilon\) is the knowledge error; soundness error of at most \(\epsilon\)
Schnorr Protocol

Prover wants to prove that it knows the discrete logarithm x of some group element $h = g^x \in \mathbb{G}$

$$r \leftarrow \mathbb{Z}_q, u = g^r$$

$$x, h = g^x$$

$$z \leftarrow r + cx$$

$$h = g^x$$

$$c \leftarrow \mathbb{Z}_q$$

$$g^z = u \cdot h^c$$
Schnorr protocol

- **Completeness:** if $z = r + cx$, then $g^z = g^{r+cx} = g^r \cdot (g^x)^c = u \cdot h^c$

- **Proof of knowledge:** Let P' be a possibly malicious prover that convinces the honest verifier with probability $\delta = 1$. Construct the extractor E as follows
 - Run P' to obtain an initial message u
 - Send random challenge c_1 to P' to get response z_1
 - Rewind the prover to its state after the first message
 - Send it another random challenge c_2 to get response z_2
 - Compute $x = \frac{z_1 - z_2}{c_1 - c_2}$
Schnorr protocol

- Proof of knowledge (cont’d):
 - Since the prover succeeds with probability 1, we know that
 \[g^{z_1} = u \cdot h^{c_1}, \text{ and } g^{z_2} = u \cdot h^{c_2}. \]
 - Therefore, \(g^{z_1 - z_2} = h^{c_1 - c_2}, \) \(h = g^{\frac{z_1 - z_2}{c_1 - c_2}}, \) \(x = \frac{z_1 - z_2}{c_1 - c_2} \)
 - Extraction fails if \(c_1 = c_2, \) which happens with probability \(\frac{1}{q}, \) which is also equal to the knowledge error.
Schnorr protocol

• **Zero-knowledge:** let’s try to construct a simulator.

 • Simulator sends $u = g^r$, verifier responds with challenge c

 • Rewind and sample $s \in \mathbb{Z}_q$, and compute $u = g^s/h^c$

 • Restart the verifier and get challenge

• Problem: a malicious verifier could respond with a different challenge c that depends on the u that it receives!
Schnorr protocol

- Honest verifier zero-knowledge:
 - Simulator sends $u = g^r$, verifier responds with challenge c
 - Rewind and sample $s \in \mathbb{Z}_q$, and compute $u = g^s/h^c$
 - Restart the verifier and get challenge c (verifier is honest, so it uses its random tape instead of adaptively choosing the challenge)
 - Simulator successfully answers with s, verifier checks that $g^s = g^s/h^c \cdot h^c$
Sigma protocols

- More general view of Schnorr’s protocol
- Protocols of the form
 - Prover sends a first message u called a commitment
 - Verifier sends a uniformly random challenge c from a finite challenge space
 - Prover generates and sends a response z
- HVZK can be turned into full ZK
- Fiat-Shamir heuristic to transform into NIZK in the random oracle model
Today’s reading: Zerocash
Next time

• Moral character of cryptographic work
 • No paper review, just one discussion question
• Project presentations
 • Will send out peer grading forms