
Hardware enclaves
& oblivious computation

Slides adapted from here

https://inst.eecs.berkeley.edu//~cs261/fa18/slides/Hardware_Enclaves.pdf

Hardware enclaves
• An alternative way to compute on encrypted data

• Hardware abstractions for distributing trusted execution to untrusted
platforms

Real world threats to trusted execution
• Malicious software

• Rootkits in OS, malicious kernel

• Cold-boot attacks

• Memory modules do not immediately lose data after loss of power

• Attacker with physical access can perform a memory dump of a machine’s RAM by
abruptly rebooting a target machine and then booting a re-installed OS from a flash
drive

• Literally cold as liquid nitrogen can be used to prolong data remanence

• Software-based disk encryption can be circumvented

Hardware enclaves architecture

Operation system

Off-chip devices like DRAM, disk

Process

Intel chip

Process Process

Enclave

Code

Data

Enclave

Attacker can compromise
almost the entire server-

side software stack

Trusted CPU
• Content is stored unencrypted in registers and cache (cannot be read by

the adversary)

• Adversary cannot change enclave program execution

• Any interruption/exception triggers an asynchronous exit (AEX)
operation

• Enclave context is saved in the EPC, registers are erased, and control
flow is returned to the external program

Enclave page cache
• Enclave pages are encrypted and stored in Enclave Page Cache (EPC)

• All enclaves share this space, but pages are encrypted under different keys

• Memory encryption engine (MEE) encrypts all evicted data from the cache

• EPC pages can also be evicted to main memory by the OS

• Content integrity is protected by MACs over pages plus a Merkle tree

• EPC pages used to be limited to 93.5 MB

• Recent Icelake SGX has up to 1 TB of EPC!

Remote attestation
• Each enclave has a set of unique keys that are generated by a root secret

embedded in the trusted CPU hardware

• Enclave produces a signed message, including a measurement that
identifies the loaded program

• Group signature scheme that preserves anonymity of the signers

• The signature can be verified by a remote user using the trusted Intel
Attestation Service (IAS)

• Group public key used to verify enclave is genuine

Enclaves are widely available in the cloud

• Azure supports SGX

• GCP supports AMD SEV (Secure Encrypted Virtualization)

• AWS supports Nitro (hypervisor-based)

Enclaves are prone to side channel attacks on encrypted data

Memory side channels
• OS is still in charge of resource management

• OS controls page table (mapping between virtual pages and
physical pages)

• Can reclaim physical pages (swap page to disk) and restore
page mappings (load physical page from disk)

• OS must know the virtual base address of the page at which
the page fault occurred (though not within a page)

• Controlled-leakage channel attack shows how the OS can
trigger page faults

• Extract text documents from font rendering engine & spell
checker

• Obtain outlines of JPEG images decompressed by libjpeg

http://www.ieee-security.org/TC/SP2015/papers-archived/6949a640.pdf

Network side channels
• SGX only meant to handle single machine

applications

• Distributed applications need network
communication

• A powerful attacker can analyze traffic
patterns even if communication is encrypted

• This paper attacks VC3 (a MapReduce
system on SGX) by observing volume of
encrypted communication

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2015-70.pdf

How to protect against access pattern leakage?

• Regular computation leaks due to data-dependent access patterns

• Access patterns will change depending on the data content, revealing
information even if all data content is encrypted

• Oblivious algorithms can be used to protect against such leakage

Oblivious sorting
• Comparison-based sorting, but fix the number of comparisons

• Also called a sorting network

• Batcher’s algorithm

• Sort the first half of a list, and sort the second half of that list

• Sort the odd-indexed values, then even-indexed values

• One more comparison-switch per pair of keys

• Proof of security?

http://math.mit.edu/~shor/18.310/batcher.pdf

Batcher’s algorithm correctness
• Theorem: Batcher’s algorithm described on the

previous slide results in a sorted list.

• Proof: Let the list’s size be where is a multiple
of 4. Denote the list as . If two halves have been
sorted separately, then for all elements between
and except for and , . We call

 the predecessor of . 
 
Both and are odd, so the above is true
for every even-indexed value, and true for every
odd value except for two.

n n
X

1
n X1 Xn/2+1 Xi−1 ≤ Xi

Xi−1 Xi

1 n/2 + 1

2

7

6

3

9

4

1

8

2

1

Batcher’s algorithm correctness
• Theorem: Batcher’s algorithm described on the

previous slide results in a sorted list.

• Proof (cont’d): Let denote the sorted even values,
and denote the sorted odd values.  
 

 must be larger than at least values in . 
 must be larger than at least values in

.

Yeven
Yodd

Yeven,l l Yodd
Yodd,l+1 l − 1
Yeven

2

7

6

3

9

4

1

8

2

76

3

9

4

1

8

Batcher’s algorithm correctness
• Theorem: Batcher’s algorithm described on the previous slide

results in a sorted list.

• Proof (cont’d): Let be the list after the 4 sorts. Let
. This means that  

 
 and (via last slide’s argument) 

 
 and (because even and odd values are

sorted separately) 
 
Therefore, the elements in pairs are ordered with respect
to adjacent pairs. So the final step is to sort within these pairs!

Y
l ∈ {1,⋯, n/2}

Y2l−1 ≤ Y2l Y2l−2 ≤ Y2l+1

Y2l−2 ≤ Y2l Y2l−1 ≤ Y2l+1

(Y2l, Y2l+1)

2

7

6

3

9

4

1

8

2

7

6

3

9

4

1

8

2

7

6

3

9

4

1

8

Batcher’s algorithm
• Applied recursively until there are

only two elements, where sort =
comparison

• Another optimization: after the two
halves are sorted, the odd and
even indexed values are partially
sorted, so needs a merge instead
of a full sort

Today’s readings:
oblivious analytics in SGX

