Final project

 Reminder: topic + literature review due Friday via email!
« Min 1 page, max 5 pages, without references
* Follow format linked on website

* Project proposal due on October 4
e 1 -2 pages (without references)

* Should have problem statement, the technical approach you will take to
solve the problem, as well as a plan to evaluate your approach compared
to prior work

Transactions, ACID, Concurrency Control

Slides adapted from here, here

https://15445.courses.cs.cmu.edu/fall2020/slides/16-concurrencycontrol.pdf
https://15445.courses.cs.cmu.edu/fall2020/slides/18-timestampordering.pdf

Transactions

* A transaction is the execution of a sequence of one or more operations on a
database to perform some higher-level function

* A transaction may carry out many operations on the data retrieved from the
database

« Example: move $100 from Alice’s bank account to Bob’s bank account
e Check whether Alice has $100
* Deduct $100 from Alice’s account

 Add $100 to Bob’s bank account

Defining transaction correctness

« ACID
 Atomicity: all actions in a transaction happen, or none happen

 Consistency: if each transaction is consistent, and the database initializes
IN a consistent state, then it will also end up Iin a consistent state

e |solation: execution of a transaction is isolated from that of other
transactions

 Durability: if a transaction commits, then its effects persist in spite of
failures

Atomicity

* Two possible outcomes of executing a transaction

e Jransaction commits — all of its effects are reflected in the database

e Transaction aborts — none of its effects are reflected in the database

* Approaches for atomicity

* Logging: logs all actions of a transaction so that it can undo aborted
transactions

 Shadow paging: DBMS makes copies of data pages and transaction makes
changes to these copies; pages made visible once transaction commits

Consistency

* The data representation is logically correct

 Database consistency

DB accurately models the real world and follows integrity constraints (e.g.,
the age of a person cannot be negative)

* Transactions in the future see the effects of past committed transactions
* Transaction consistency

* A transaction should only change the database state in allowed ways such
that the DB stays consistent after a committed transaction

* Ensuring transaction consistency is the application’s responsibility

Isolation

 DBMS provides transactions with the illusion that they are running alone in
the system

 Easy for user to reason about correctness
 How to achieve this?
* Serialize all transactions by processing one at a time

* Interleave transactions efficiently and correctly

Serializability

* An interleaving is correct if it is equivalent to some serial execution

 Serializable schedule: a schedule that does not interleave the actions of
different transactions

 Equivalent schedules: given schedules Sl, Sz, and database state D, the

effect of executing the §; on D is identical to the effect of executing S, on
D

Conflicting operations

 Two operations conflict if
* They are by different transactions, and
 They are on the same object and at least one of them is a write
e Read-Write, Write-Read, Write-Write conflicts
« DBMS support conflict serializability:
 Two schedules are conflict equivalent iff
* They involve the same operations of the same transactions
* Every pair of conflicting operations is ordered in the same way in both schedules

* A schedule is conflict serializable if it is conflict equivalent to some serial schedule

Concurrency control

 Mechanism for ensuring isolation

« DBMS uses concurrency control protocol to decide the proper interleaving
of operations from multiple transactions

 Jwo categories

 Pessimistic: don’t let the problems arise in the first place

 Optimistic: assume conflicts are rare, deal with them after they happen

Basic timestamp ordering

 Transactions read and write objects without locks

 Every object is tagged with the timestamp of the last transaction that
successfully did a read/write

» 15,,(X) = write timestamp on X

o 15 .(X) = read timestamp on X

 Check timestamp for every operation; if a transaction tries to access an
object with a future timestamp, then abort and retry

Timestamp ordering

e Reads:

e If 15(T;) < T8,,(X)— abort T,
and restart with a new timestamp

» Else: allow 7 to read X, update
TS,(X) = max(TS,(X), TS(T)).
make a local copy of X to ensure
repeatable reads for 1,

R(A)
COMMIT

Timestamp ordering

e Writes:

o« If T5(T,)) < TS5,.(X) or
IS(T) < TS, (X) = abort T; and

restart with a new timestamp
BEGIN

| R(A)
o Else: allow 7 to write to X, COMMIT

update 735, (X), make a local

W(A)
COMMIT

copy of X to ensure repeatable
reads for 1;

Weak isolation?

» Serializability is useful but enforcing it may be too expensive

 Anomalies:
* Dirty read: reading uncommitted data
* Unrepeatable reads: redoing a read results in a different result

 Phantom reads: insertions or deletions result in different results for the same range query

* |solation levels
 SERIALIZABLE (strongest)
« REPEATABLE READS: phantoms may happen

« READ-COMMITTED: phantoms and unrepeatable reads may happen
« READ-UNCOMMITTED: all anomalies can happen

Durability

» All of the changes of committed transactions should be made persistent
after a crash or a restart

* Jechniques:
* Logging, checkpointing

 Shadow paging

Today’s reading: Obladi

