
Final project
• Reminder: topic + literature review due Friday via email!

• Min 1 page, max 5 pages, without references

• Follow format linked on website

• Project proposal due on October 4

• 1 - 2 pages (without references)

• Should have problem statement, the technical approach you will take to
solve the problem, as well as a plan to evaluate your approach compared
to prior work

Transactions, ACID, Concurrency Control

Slides adapted from here, here

https://15445.courses.cs.cmu.edu/fall2020/slides/16-concurrencycontrol.pdf
https://15445.courses.cs.cmu.edu/fall2020/slides/18-timestampordering.pdf

Transactions
• A transaction is the execution of a sequence of one or more operations on a

database to perform some higher-level function

• A transaction may carry out many operations on the data retrieved from the
database

• Example: move $100 from Alice’s bank account to Bob’s bank account

• Check whether Alice has $100

• Deduct $100 from Alice’s account

• Add $100 to Bob’s bank account

Defining transaction correctness
• ACID

• Atomicity: all actions in a transaction happen, or none happen

• Consistency: if each transaction is consistent, and the database initializes
in a consistent state, then it will also end up in a consistent state

• Isolation: execution of a transaction is isolated from that of other
transactions

• Durability: if a transaction commits, then its effects persist in spite of
failures

Atomicity
• Two possible outcomes of executing a transaction

• Transaction commits all of its effects are reflected in the database

• Transaction aborts none of its effects are reflected in the database

• Approaches for atomicity

• Logging: logs all actions of a transaction so that it can undo aborted
transactions

• Shadow paging: DBMS makes copies of data pages and transaction makes
changes to these copies; pages made visible once transaction commits

→

→

Consistency
• The data representation is logically correct

• Database consistency

• DB accurately models the real world and follows integrity constraints (e.g.,
the age of a person cannot be negative)

• Transactions in the future see the effects of past committed transactions

• Transaction consistency

• A transaction should only change the database state in allowed ways such
that the DB stays consistent after a committed transaction

• Ensuring transaction consistency is the application’s responsibility

Isolation
• DBMS provides transactions with the illusion that they are running alone in

the system

• Easy for user to reason about correctness

• How to achieve this?

• Serialize all transactions by processing one at a time

• Interleave transactions efficiently and correctly

Serializability
• An interleaving is correct if it is equivalent to some serial execution

• Serializable schedule: a schedule that does not interleave the actions of
different transactions

• Equivalent schedules: given schedules , , and database state , the
effect of executing the on is identical to the effect of executing on

S1 S2 D
S1 D S2

D

Conflicting operations
• Two operations conflict if

• They are by different transactions, and

• They are on the same object and at least one of them is a write

• Read-Write, Write-Read, Write-Write conflicts

• DBMS support conflict serializability:

• Two schedules are conflict equivalent iff

• They involve the same operations of the same transactions

• Every pair of conflicting operations is ordered in the same way in both schedules

• A schedule is conflict serializable if it is conflict equivalent to some serial schedule

Concurrency control
• Mechanism for ensuring isolation

• DBMS uses concurrency control protocol to decide the proper interleaving
of operations from multiple transactions

• Two categories

• Pessimistic: don’t let the problems arise in the first place

• Optimistic: assume conflicts are rare, deal with them after they happen

Basic timestamp ordering
• Transactions read and write objects without locks

• Every object is tagged with the timestamp of the last transaction that
successfully did a read/write

• = write timestamp on X

• = read timestamp on X

• Check timestamp for every operation; if a transaction tries to access an
object with a future timestamp, then abort and retry

TSw(X)

TSr(X)

Timestamp ordering
• Reads:

• If abort
and restart with a new timestamp

• Else: allow to read , update
,

make a local copy of to ensure
repeatable reads for

TS(Ti) < TSw(X)→ Ti

Ti X
TSr(X) = max(TSr(X), TS(Ti))

X
Ti

T1 T2

BEGIN

COMMIT

COMMIT

BEGINR(A)

R(A)

R(A)
W(A)

Timestamp ordering
• Writes:

• If or
 abort and

restart with a new timestamp

• Else: allow to write to ,
update , make a local
copy of to ensure repeatable
reads for

TS(Ti) < TSr(X)
TS(Ti) < TSw(X) → Ti

Ti X
TSw(X)
X

Ti

T1 T2

BEGIN

COMMIT

COMMIT

BEGINW(A)

W(A)

R(A)

Weak isolation?
• Serializability is useful but enforcing it may be too expensive

• Anomalies:

• Dirty read: reading uncommitted data

• Unrepeatable reads: redoing a read results in a different result

• Phantom reads: insertions or deletions result in different results for the same range query

• Isolation levels

• SERIALIZABLE (strongest)

• REPEATABLE READS: phantoms may happen

• READ-COMMITTED: phantoms and unrepeatable reads may happen

• READ-UNCOMMITTED: all anomalies can happen

Durability
• All of the changes of committed transactions should be made persistent

after a crash or a restart

• Techniques:

• Logging, checkpointing

• Shadow paging

Today’s reading: Obladi

