
Function Secret Sharing, Distributed
Point Functions

Slides adapted from here, here

https://crypto.stanford.edu/cs359c/17sp/notes/lec8b.pdf
https://eprint.iacr.org/2018/707.pdf

Function secret sharing

Function secret sharing
• Allows a dealer to split a function into function shares such that for any input

,

f fi
x f(x) =

n

∑
i

fi(x)

Function secret sharing
• Allows a dealer to split a function into function shares such that for any input

,

f fi
x f(x) =

n

∑
i

fi(x)

• Function shares must be

Function secret sharing
• Allows a dealer to split a function into function shares such that for any input

,

f fi
x f(x) =

n

∑
i

fi(x)

• Function shares must be

• Succinct - otherwise one could trivially share the truth table of f

Function secret sharing
• Allows a dealer to split a function into function shares such that for any input

,

f fi
x f(x) =

n

∑
i

fi(x)

• Function shares must be

• Succinct - otherwise one could trivially share the truth table of f

• Secret - function shares should not reveal anything about the function f

Function secret sharing
• Allows a dealer to split a function into function shares such that for any input

,

f fi
x f(x) =

n

∑
i

fi(x)

• Function shares must be

• Succinct - otherwise one could trivially share the truth table of f

• Secret - function shares should not reveal anything about the function f

• Setting: multiple servers with some collusion threshold, each holding a copy of
the full dataset

Function secret sharing

Function secret sharing
• is a PPT key generation algorithm, which outputs an -tuple of

keys

• is a polynomial-time evaluation algorithm, which on input
 (party index), (key defining the function share), outputs a

group element (the value of)

Gen(1λ, ̂f) m
(k1, ⋯, km)

Eval(i, ki, x)
i ∈ [m] ki fi

yi ∈ 𝔾 fi(x)

Distributed point functions (DPFs)

Distributed point functions (DPFs)
• A point function for and , is defined to be the

function such that
fα,β α = ∈ {0,1}n β ∈ 𝔾

f : {0,1}n → 𝔾

Distributed point functions (DPFs)
• A point function for and , is defined to be the

function such that
fα,β α = ∈ {0,1}n β ∈ 𝔾

f : {0,1}n → 𝔾

• f(α) = β

Distributed point functions (DPFs)
• A point function for and , is defined to be the

function such that
fα,β α = ∈ {0,1}n β ∈ 𝔾

f : {0,1}n → 𝔾

• f(α) = β

• for f(x) = 0 x ≠ α

DPF construction

DPF construction
•Let be a

length-doubling pseudorandom
generator

G : {0,1}λ → {0,1}2λ

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf

DPF construction
•Let be a

length-doubling pseudorandom
generator

G : {0,1}λ → {0,1}2λ

•GGM-style pseudorandom function:

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf

DPF construction
•Let be a

length-doubling pseudorandom
generator

G : {0,1}λ → {0,1}2λ

•GGM-style pseudorandom function:

• Given an output of , can divide
into two halves where

G(s)

G(s) = G0(s) | |G1(s)

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf

DPF construction
•Let be a

length-doubling pseudorandom
generator

G : {0,1}λ → {0,1}2λ

•GGM-style pseudorandom function:

• Given an output of , can divide
into two halves where

G(s)

G(s) = G0(s) | |G1(s)

• If is the root, then recursively
applying will result in a tree

s
G

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf

DPF construction
•Let be a

length-doubling pseudorandom
generator

G : {0,1}λ → {0,1}2λ

•GGM-style pseudorandom function:

• Given an output of , can divide
into two halves where

G(s)

G(s) = G0(s) | |G1(s)

• If is the root, then recursively
applying will result in a tree

s
G

G(s)

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf

DPF construction
•Let be a

length-doubling pseudorandom
generator

G : {0,1}λ → {0,1}2λ

•GGM-style pseudorandom function:

• Given an output of , can divide
into two halves where

G(s)

G(s) = G0(s) | |G1(s)

• If is the root, then recursively
applying will result in a tree

s
G

G(s)

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf

DPF construction
•Let be a

length-doubling pseudorandom
generator

G : {0,1}λ → {0,1}2λ

•GGM-style pseudorandom function:

• Given an output of , can divide
into two halves where

G(s)

G(s) = G0(s) | |G1(s)

• If is the root, then recursively
applying will result in a tree

s
G

G(s)

G0(s) G1(s)

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf

DPF construction
•Let be a

length-doubling pseudorandom
generator

G : {0,1}λ → {0,1}2λ

•GGM-style pseudorandom function:

• Given an output of , can divide
into two halves where

G(s)

G(s) = G0(s) | |G1(s)

• If is the root, then recursively
applying will result in a tree

s
G

G(s)

G0(s) G1(s)

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf

DPF construction
•Let be a

length-doubling pseudorandom
generator

G : {0,1}λ → {0,1}2λ

•GGM-style pseudorandom function:

• Given an output of , can divide
into two halves where

G(s)

G(s) = G0(s) | |G1(s)

• If is the root, then recursively
applying will result in a tree

s
G

G(s)

G0(s) G1(s)

G00(s) G01(s) G10(s) G11(s)

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf

DPF construction

DPF construction
• A two-party, tree-based scheme with two keys, k0, k1

https://eprint.iacr.org/2018/707.pdf

DPF construction
• A two-party, tree-based scheme with two keys, k0, k1

• Starting point is the GGM-style binary tree, but have a special evaluation path
for the special input α

https://eprint.iacr.org/2018/707.pdf

DPF construction
• A two-party, tree-based scheme with two keys, k0, k1

• Starting point is the GGM-style binary tree, but have a special evaluation path
for the special input α

• Invariant for each node

https://eprint.iacr.org/2018/707.pdf

DPF construction
• A two-party, tree-based scheme with two keys, k0, k1

• Starting point is the GGM-style binary tree, but have a special evaluation path
for the special input α

• Invariant for each node

• Each node has a seed, and a control bit

https://eprint.iacr.org/2018/707.pdf

DPF construction
• A two-party, tree-based scheme with two keys, k0, k1

• Starting point is the GGM-style binary tree, but have a special evaluation path
for the special input α

• Invariant for each node

• Each node has a seed, and a control bit

• Outside of special path: labels on the two trees are identical

https://eprint.iacr.org/2018/707.pdf

DPF construction
• A two-party, tree-based scheme with two keys, k0, k1

• Starting point is the GGM-style binary tree, but have a special evaluation path
for the special input α

• Invariant for each node

• Each node has a seed, and a control bit

• Outside of special path: labels on the two trees are identical

• On the special path: seeds are indistinguishable from being random and
independent, and two control bits are different

https://eprint.iacr.org/2018/707.pdf

DPF construction

DPF construction
• Let be a PRG, and let denote an additive secret

sharing among two parties where the shares are , and that
G : {0,1}λ → {0,1}2λ+2 [s]

s0, s1 s = s0 ⊕ s1

DPF construction
• Let be a PRG, and let denote an additive secret

sharing among two parties where the shares are , and that
G : {0,1}λ → {0,1}2λ+2 [s]

s0, s1 s = s0 ⊕ s1

• Relies on two insights: properties of additive secret sharing specific to two
parties

DPF construction
• Let be a PRG, and let denote an additive secret

sharing among two parties where the shares are , and that
G : {0,1}λ → {0,1}2λ+2 [s]

s0, s1 s = s0 ⊕ s1

• Relies on two insights: properties of additive secret sharing specific to two
parties

• Weak homomorphism: extends G([s]) = (G(s0), G(s1))

DPF construction
• Let be a PRG, and let denote an additive secret

sharing among two parties where the shares are , and that
G : {0,1}λ → {0,1}2λ+2 [s]

s0, s1 s = s0 ⊕ s1

• Relies on two insights: properties of additive secret sharing specific to two
parties

• Weak homomorphism: extends G([s]) = (G(s0), G(s1))

• Shares of the -string into shares of a longer -string. Why?0 0

DPF construction
• Let be a PRG, and let denote an additive secret

sharing among two parties where the shares are , and that
G : {0,1}λ → {0,1}2λ+2 [s]

s0, s1 s = s0 ⊕ s1

• Relies on two insights: properties of additive secret sharing specific to two
parties

• Weak homomorphism: extends G([s]) = (G(s0), G(s1))

• Shares of the -string into shares of a longer -string. Why?0 0 s = 0 → s0 = s1

DPF construction
• Let be a PRG, and let denote an additive secret

sharing among two parties where the shares are , and that
G : {0,1}λ → {0,1}2λ+2 [s]

s0, s1 s = s0 ⊕ s1

• Relies on two insights: properties of additive secret sharing specific to two
parties

• Weak homomorphism: extends G([s]) = (G(s0), G(s1))

• Shares of the -string into shares of a longer -string. Why?0 0
• Shares of a random seed into shares of a longer pseudorandom string s S

s = 0 → s0 = s1

DPF construction
• Let be a PRG, and let denote an additive secret

sharing among two parties where the shares are , and that
G : {0,1}λ → {0,1}2λ+2 [s]

s0, s1 s = s0 ⊕ s1

• Relies on two insights: properties of additive secret sharing specific to two
parties

• Weak homomorphism: extends G([s]) = (G(s0), G(s1))

• Shares of the -string into shares of a longer -string. Why?0 0
• Shares of a random seed into shares of a longer pseudorandom string s S

• Additive homomorphism: given shares of length and ,
respectively, and a public correction word , one can locally compute
shares of

[s], [t] λ 1
CW

[s ⊕ t ⋅ CW]

s = 0 → s0 = s1

DPF construction
• Let be a PRG, and let denote an additive secret

sharing among two parties where the shares are , and that
G : {0,1}λ → {0,1}2λ+2 [s]

s0, s1 s = s0 ⊕ s1

• Relies on two insights: properties of additive secret sharing specific to two
parties

• Weak homomorphism: extends G([s]) = (G(s0), G(s1))

• Shares of the -string into shares of a longer -string. Why?0 0
• Shares of a random seed into shares of a longer pseudorandom string s S

• Additive homomorphism: given shares of length and ,
respectively, and a public correction word , one can locally compute
shares of

[s], [t] λ 1
CW

[s ⊕ t ⋅ CW]

s = 0 → s0 = s1

’s value chooses whether CW is applied to st

DPF construction
s0
i , t0

i s1
i , t1

i

sL
0 , tL

0

G(s0
i) = sL

0 , tL
0 , sR

0 , tR
0 G(s1

i) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

DPF construction
s0
i , t0

i s1
i , t1

i is seed, is control bitsi ti

sL
0 , tL

0

G(s0
i) = sL

0 , tL
0 , sR

0 , tR
0 G(s1

i) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

DPF construction
s0
i , t0

i s1
i , t1

i is seed, is control bitsi ti

sL
0 , tL

0

G(s0
i) = sL

0 , tL
0 , sR

0 , tR
0 G(s1

i) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

, si = s0
i ⊕ s1

i ti = t0
i ⊕ t1

i

DPF construction
s0
i , t0

i s1
i , t1

i is seed, is control bitsi ti

sL
0 , tL

0

G(s0
i) = sL

0 , tL
0 , sR

0 , tR
0 G(s1

i) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

, si = s0
i ⊕ s1

i ti = t0
i ⊕ t1

i

If node is off the special path, then the weak homomorphism
will allow expansion of the 0 string into a longer 0 string,

maintaining identical labels

DPF construction
s0
i , t0

i s1
i , t1

i

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

DPF construction
s0
i , t0

i s1
i , t1

i

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

Because of additive homomorphism,
CW is only applied when the node is
on the special path!

DPF construction
s0
i , t0

i s1
i , t1

i

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

DPF construction
s0
i , t0

i s1
i , t1

i

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

DPF construction
s0
i , t0

i s1
i , t1

i
ti = t0

i ⊕ t1
i = 1

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

DPF construction
s0
i , t0

i s1
i , t1

i
ti = t0

i ⊕ t1
i = 1

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

CW =

DPF construction
s0
i , t0

i s1
i , t1

i
ti = t0

i ⊕ t1
i = 1

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

CW = sL

DPF construction
s0
i , t0

i s1
i , t1

i
ti = t0

i ⊕ t1
i = 1

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

CW = sL | | tL

DPF construction
s0
i , t0

i s1
i , t1

i
ti = t0

i ⊕ t1
i = 1

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

CW = sL | | tL | | sR ⊕ s′

DPF construction
s0
i , t0

i s1
i , t1

i
ti = t0

i ⊕ t1
i = 1

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

CW = sL | | tL | | sR ⊕ s′ | | tR ⊕ 1

DPF construction
s0
i , t0

i s1
i , t1

i
ti = t0

i ⊕ t1
i = 1

sL
0 , tL

0

G(s0
i) ⊕ (ti

0 ⋅ CW) = sL
0 , tL

0 , sR
0 , tR

0 G(s1
i) ⊕ (ti

1 ⋅ CW) = sL
1 , tL

1 , sR
1 , tR

1

sR
0 , tR

0 sL
1 , tL

1 sR
1 , tR

1

If reached leaf node, control bit is either 0 or
1, and an additional CW is added to select
based on the value of the control bit

t
β

DPF construction

DPF construction

DPF construction

 generationCW

DPF construction

 generationCW

Leaf CW

DPF construction

 generationCW

Leaf CW

DPF construction

 generationCW

Leaf CW

DPF construction

 generationCW

Leaf CW
Key handed to each party

DPF construction

 generationCW

Leaf CW
Key handed to each party

Key size?

DPF construction

 generationCW

Leaf CW
Key handed to each party

Key size?
 where is the number

of bits of input
O(λn) n

DPF construction

 generationCW

Leaf CW
Key handed to each party

Key size?
 where is the number

of bits of input
O(λn) n

DPF construction

 generationCW

Leaf CW
Key handed to each party

Key size?
 where is the number

of bits of input
O(λn) n

Security?

DPF construction

 generationCW

Leaf CW
Key handed to each party

Key size?
 where is the number

of bits of input
O(λn) n

Security?
 is pseudorandom because

1) seed is random 2) CW use
up 3/4 generated randomness

kb

Applications of DPF
• Private keyword search

How many times does
“Pittsburgh” appear?

Applications of DPF
• Private statistics collection

URL hits URL hits

google.com: v0 google.com: v1

facebook.com: w0 facebook.com: w1

Today: anonymous messaging

Next time: Pung
• DPF can be used for Private Information Retrieval (PIR)

• Allows clients to fetch item from a database of items without
revealing

i n
i

Generate keys for where is the index and fα,β α β = 1

Next time: Pung

Next time: Pung
• One weakness of DPF: requires non-colluding servers

Next time: Pung
• One weakness of DPF: requires non-colluding servers

• Is it possible to only use a single server that’s fully untrusted?

Next time: Pung
• One weakness of DPF: requires non-colluding servers

• Is it possible to only use a single server that’s fully untrusted?

• Single server computational private information retrieval

Next time: Pung
• One weakness of DPF: requires non-colluding servers

• Is it possible to only use a single server that’s fully untrusted?

• Single server computational private information retrieval

• Is it possible to reduce the cost of a retrieval?

Next time: Pung
• One weakness of DPF: requires non-colluding servers

• Is it possible to only use a single server that’s fully untrusted?

• Single server computational private information retrieval

• Is it possible to reduce the cost of a retrieval?

• Batching queries together for better throughput

