
Function Secret Sharing, Distributed 
Point Functions 

Slides adapted from here, here

https://crypto.stanford.edu/cs359c/17sp/notes/lec8b.pdf
https://eprint.iacr.org/2018/707.pdf
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Function secret sharing
• Allows a dealer to split a function  into function shares  such that for any input 

, 

f fi
x f(x) =

n

∑
i

fi(x)

• Function shares must be

• Succinct - otherwise one could trivially share the truth table of f

• Secret - function shares should not reveal anything about the function f

• Setting: multiple servers with some collusion threshold, each holding a copy of 
the full dataset



Function secret sharing



Function secret sharing
•  is a PPT key generation algorithm, which outputs an -tuple of 

keys 


•  is a polynomial-time evaluation algorithm, which on input 
 (party index),  (key defining the function share ), outputs a 

group element  (the value of )

Gen(1λ, ̂f ) m
(k1, ⋯, km)

Eval(i, ki, x)
i ∈ [m] ki fi

yi ∈ 𝔾 fi(x)
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Distributed point functions (DPFs)
• A point function  for  and , is defined to be the 

function  such that
fα,β α = ∈ {0,1}n β ∈ 𝔾

f : {0,1}n → 𝔾

• f(α) = β

•  for f(x) = 0 x ≠ α
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DPF construction
•Let  be a 

length-doubling pseudorandom 
generator

G : {0,1}λ → {0,1}2λ

•GGM-style pseudorandom function: 

• Given an output of , can divide 
into two halves where 

G(s)

G(s) = G0(s) | |G1(s)

• If  is the root, then recursively 
applying  will result in a tree

s
G

G(s)

G0(s) G1(s)

G00(s) G01(s) G10(s) G11(s)

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202015/lectures/09.pdf
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DPF construction
• A two-party, tree-based scheme with two keys, k0, k1

• Starting point is the GGM-style binary tree, but have a special evaluation path 
for the special input α

• Invariant for each node

• Each node has a seed, and a control bit

• Outside of special path: labels on the two trees are identical

• On the special path: seeds are indistinguishable from being random and 
independent, and two control bits are different

https://eprint.iacr.org/2018/707.pdf
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DPF construction
• Let  be a PRG, and let  denote an additive secret 

sharing among two parties where the shares are , and that 
G : {0,1}λ → {0,1}2λ+2 [s]

s0, s1 s = s0 ⊕ s1

• Relies on two insights: properties of additive secret sharing specific to two 
parties

• Weak homomorphism:  extends G([s]) = (G(s0), G(s1))

• Shares of the -string into shares of a longer -string. Why?0 0
• Shares of a random seed  into shares of a longer pseudorandom string s S

• Additive homomorphism: given shares  of length  and , 
respectively, and a public correction word , one can locally compute 
shares of 

[s], [t] λ 1
CW

[s ⊕ t ⋅ CW]

s = 0 → s0 = s1

’s value chooses whether CW is applied to st
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s0
i , t0

i s1
i , t1

i is seed,  is control bitsi ti
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, si = s0
i ⊕ s1

i ti = t0
i ⊕ t1

i

If node is off the special path, then the weak homomorphism 
will allow expansion of the 0 string into a longer 0 string, 

maintaining identical labels
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If reached leaf node, control bit  is either 0 or 
1, and an additional CW is added to select  
based on the value of the control bit

t
β
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 generationCW

Leaf  CW
Key handed to each party

Key size? 
 where  is the number 

of bits of input
O(λn) n

Security?  
 is pseudorandom because 

1) seed is random 2) CW use 
up 3/4 generated randomness

kb



Applications of DPF
• Private keyword search

How many times does 
“Pittsburgh” appear?



Applications of DPF
• Private statistics collection

URL hits URL hits

google.com: v0 google.com: v1

facebook.com: w0 facebook.com: w1



Today: anonymous messaging



Next time: Pung
• DPF can be used for Private Information Retrieval (PIR)


• Allows clients to fetch item  from a database of  items without 
revealing 

i n
i

Generate keys for  where  is the index and fα,β α β = 1
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Next time: Pung
• One weakness of DPF: requires non-colluding servers

• Is it possible to only use a single server that’s fully untrusted? 

• Single server computational private information retrieval

• Is it possible to reduce the cost of a retrieval?

• Batching queries together for better throughput


