Function Secret Sharing, Distributed Point Functions

Function secret sharing

Function secret sharing

- Allows a dealer to split a function f into function shares f_{i} such that for any input

$$
x, f(x)=\sum_{i}^{n} f_{i}(x)
$$

Function secret sharing

- Allows a dealer to split a function f into function shares f_{i} such that for any input

$$
x, f(x)=\sum_{i}^{n} f_{i}(x)
$$

- Function shares must be

Function secret sharing

- Allows a dealer to split a function f into function shares f_{i} such that for any input

$$
x, f(x)=\sum_{i}^{n} f_{i}(x)
$$

- Function shares must be
- Succinct - otherwise one could trivially share the truth table of f

Function secret sharing

- Allows a dealer to split a function f into function shares f_{i} such that for any input

$$
x, f(x)=\sum_{i}^{n} f_{i}(x)
$$

- Function shares must be
- Succinct - otherwise one could trivially share the truth table of f
- Secret - function shares should not reveal anything about the function f

Function secret sharing

- Allows a dealer to split a function f into function shares f_{i} such that for any input

$$
x, f(x)=\sum_{i}^{n} f_{i}(x)
$$

- Function shares must be
- Succinct - otherwise one could trivially share the truth table of f
- Secret - function shares should not reveal anything about the function f
- Setting: multiple servers with some collusion threshold, each holding a copy of the full dataset

Function secret sharing

Function secret sharing

- $\operatorname{Gen}\left(1^{\lambda}, \hat{f}\right)$ is a PPT key generation algorithm, which outputs an m-tuple of keys $\left(k_{1}, \cdots, k_{m}\right)$
- Eval $\left(i, k_{i}, x\right)$ is a polynomial-time evaluation algorithm, which on input $i \in[m]$ (party index), k_{i} (key defining the function share f_{i}), outputs a group element $y_{i} \in \mathbb{G}$ (the value of $\left.f_{i}(x)\right)$

Distributed point functions (DPFs)

Distributed point functions (DPFs)

- A point function $f_{\alpha, \beta}$ for $\alpha=\in\{0,1\}^{n}$ and $\beta \in \mathbb{G}$, is defined to be the function $f:\{0,1\}^{n} \rightarrow \mathbb{G}$ such that

Distributed point functions (DPFs)

- A point function $f_{\alpha, \beta}$ for $\alpha=\in\{0,1\}^{n}$ and $\beta \in \mathbb{G}$, is defined to be the function $f:\{0,1\}^{n} \rightarrow \mathbb{G}$ such that
- $f(\alpha)=\beta$

Distributed point functions (DPFs)

- A point function $f_{\alpha, \beta}$ for $\alpha=\in\{0,1\}^{n}$ and $\beta \in \mathbb{G}$, is defined to be the function $f:\{0,1\}^{n} \rightarrow \mathbb{G}$ such that
- $f(\alpha)=\beta$
- $f(x)=0$ for $x \neq \alpha$

DPF construction

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda}$ be a length-doubling pseudorandom generator

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda}$ be a length-doubling pseudorandom generator
- GGM-style pseudorandom function:

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda}$ be a length-doubling pseudorandom generator
- GGM-style pseudorandom function:
- Given an output of $G(s)$, can divide into two halves where
$G(s)=G_{0}(s)| | G_{1}(s)$

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda}$ be a length-doubling pseudorandom generator
- GGM-style pseudorandom function:
- Given an output of $G(s)$, can divide into two halves where
$G(s)=G_{0}(s)| | G_{1}(s)$
- If s is the root, then recursively applying G will result in a tree

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda}$ be a length-doubling pseudorandom generator
- GGM-style pseudorandom function:
- Given an output of $G(s)$, can divide into two halves where
$G(s)=G_{0}(s)| | G_{1}(s)$
- If s is the root, then recursively applying G will result in a tree

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda}$ be a length-doubling pseudorandom generator
- GGM-style pseudorandom function:

- Given an output of $G(s)$, can divide into two halves where
$G(s)=G_{0}(s)| | G_{1}(s)$
- If s is the root, then recursively applying G will result in a tree

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda}$ be a length-doubling pseudorandom generator
- GGM-style pseudorandom function:
- Given an output of $G(s)$, can divide into two halves where
$G(s)=G_{0}(s)| | G_{1}(s)$
- If s is the root, then recursively applying G will result in a tree

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda}$ be a length-doubling pseudorandom generator
- GGM-style pseudorandom function:
- Given an output of $G(s)$, can divide into two halves where
$G(s)=G_{0}(s)| | G_{1}(s)$
- If s is the root, then recursively applying G will result in a tree

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda}$ be a length-doubling pseudorandom generator
- GGM-style pseudorandom function:
- Given an output of $G(s)$, can divide into two halves where $G(s)=G_{0}(s)| | G_{1}(s)$

- If s is the root, then recursively applying G will result in a tree

DPF construction

DPF construction

- A two-party, tree-based scheme with two keys, k_{0}, k_{1}

DPF construction

- A two-party, tree-based scheme with two keys, k_{0}, k_{1}
- Starting point is the GGM-style binary tree, but have a special evaluation path for the special input α

DPF construction

- A two-party, tree-based scheme with two keys, k_{0}, k_{1}
- Starting point is the GGM-style binary tree, but have a special evaluation path for the special input α
- Invariant for each node

DPF construction

- A two-party, tree-based scheme with two keys, k_{0}, k_{1}
- Starting point is the GGM-style binary tree, but have a special evaluation path for the special input α
- Invariant for each node
- Each node has a seed, and a control bit

DDE COMStRUCtion

- A two-party, tree-based scheme with two keys, k_{0}, k_{1}
- Starting point is the GGM-style binary tree, but have a special evaluation path for the special input α
- Invariant for each node
- Each node has a seed, and a control bit
- Outside of special path: labels on the two trees are identical

DDE COMStRUCtion

- A two-party, tree-based scheme with two keys, k_{0}, k_{1}
- Starting point is the GGM-style binary tree, but have a special evaluation path for the special input α
- Invariant for each node
- Each node has a seed, and a control bit
- Outside of special path: labels on the two trees are identical
- On the special path: seeds are indistinguishable from being random and independent, and two control bits are different

DPF construction

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda+2}$ be a PRG, and let $[s]$ denote an additive secret sharing among two parties where the shares are s_{0}, s_{1}, and that $s=s_{0} \oplus s_{1}$

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda+2}$ be a PRG, and let $[s]$ denote an additive secret sharing among two parties where the shares are s_{0}, s_{1}, and that $s=s_{0} \oplus s_{1}$
- Relies on two insights: properties of additive secret sharing specific to two parties

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda+2}$ be a PRG, and let $[s]$ denote an additive secret sharing among two parties where the shares are s_{0}, s_{1}, and that $s=s_{0} \oplus s_{1}$
- Relies on two insights: properties of additive secret sharing specific to two parties
- Weak homomorphism: $G([s])=\left(G\left(s_{0}\right), G\left(s_{1}\right)\right)$ extends

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda+2}$ be a PRG, and let $[s]$ denote an additive secret sharing among two parties where the shares are s_{0}, s_{1}, and that $s=s_{0} \oplus s_{1}$
- Relies on two insights: properties of additive secret sharing specific to two parties
- Weak homomorphism: $G([s])=\left(G\left(s_{0}\right), G\left(s_{1}\right)\right)$ extends
- Shares of the 0 -string into shares of a longer 0 -string. Why?

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda+2}$ be a PRG, and let $[s]$ denote an additive secret sharing among two parties where the shares are s_{0}, s_{1}, and that $s=s_{0} \oplus s_{1}$
- Relies on two insights: properties of additive secret sharing specific to two parties
- Weak homomorphism: $G([s])=\left(G\left(s_{0}\right), G\left(s_{1}\right)\right)$ extends
- Shares of the 0 -string into shares of a longer 0 -string. Why? $s=0 \rightarrow s_{0}=s_{1}$

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda+2}$ be a PRG, and let $[s]$ denote an additive secret sharing among two parties where the shares are s_{0}, s_{1}, and that $s=s_{0} \oplus s_{1}$
- Relies on two insights: properties of additive secret sharing specific to two parties
- Weak homomorphism: $G([s])=\left(G\left(s_{0}\right), G\left(s_{1}\right)\right)$ extends
- Shares of the 0 -string into shares of a longer 0 -string. Why? $s=0 \rightarrow s_{0}=s_{1}$
- Shares of a random seed s into shares of a longer pseudorandom string S

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda+2}$ be a PRG, and let $[s]$ denote an additive secret sharing among two parties where the shares are s_{0}, s_{1}, and that $s=s_{0} \oplus s_{1}$
- Relies on two insights: properties of additive secret sharing specific to two parties
- Weak homomorphism: $G([s])=\left(G\left(s_{0}\right), G\left(s_{1}\right)\right)$ extends
- Shares of the 0 -string into shares of a longer 0 -string. Why? $\quad s=0 \rightarrow s_{0}=s_{1}$
- Shares of a random seed s into shares of a longer pseudorandom string S
- Additive homomorphism: given shares $[s],[t]$ of length λ and 1 , respectively, and a public correction word $C W$, one can locally compute shares of $[s \oplus t \cdot C W]$

DPF construction

- Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{2 \lambda+2}$ be a PRG, and let $[s]$ denote an additive secret sharing among two parties where the shares are s_{0}, s_{1}, and that $s=s_{0} \oplus s_{1}$
- Relies on two insights: properties of additive secret sharing specific to two parties
- Weak homomorphism: $G([s])=\left(G\left(s_{0}\right), G\left(s_{1}\right)\right)$ extends
- Shares of the 0 -string into shares of a longer 0 -string. Why? $s=0 \rightarrow s_{0}=s_{1}$
- Shares of a random seed s into shares of a longer pseudorandom string S
- Additive homomorphism: given shares $[s],[t]$ of length λ and 1 , respectively, and a public correction word $C W$, one can locally compute shares of $[s \oplus t \cdot C W] \quad t$'s value chooses whether CW is applied to s

DPF construction

$$
G\left(s_{i}^{0}\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}
$$

s_{0}^{L}, t_{0}^{L}

$$
G\left(s_{i}^{1}\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

DPF construction

$$
s_{i}^{0}, t_{i}^{0}
$$

s_{i} is seed, t_{i} is control bit

$$
s_{i}^{1}, t_{i}^{1}
$$

$$
G\left(s_{i}^{1}\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

DPF construction

s_{i}^{0}, t_{i}^{0}
s_{i} is seed, t_{i} is control bit

$$
s_{1}^{1}, t^{\prime}
$$

$$
G\left(s_{i}^{0}\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R} \quad s_{i}=s_{i}^{0} \oplus s_{i}^{1}, t_{i}=t_{i}^{0} \oplus t_{i}^{1} \quad G\left(s_{i}^{1}\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

DPF construction

s_{i}^{0}, t_{i}^{0}
s_{i} is seed, t_{i} is control bit

$$
s_{i}=s_{i}^{0} \oplus s_{i}^{1}, t_{i}=t_{i}^{0} \oplus t_{i}^{1}
$$

$$
G\left(s_{i}^{1}\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

s_{0}^{L}, t_{0}^{L}

If node is off the special path, then the weak homomorphism will allow expansion of the 0 string into a longer 0 string, maintaining identical labels

DPF construction

s_{i}^{0}, t_{i}^{0}
s_{i}^{1}, t_{i}^{1}
$G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}$

DPF construction

$$
s_{i}^{0}, t_{i}^{0}
$$

Because of additive homomorphism, CW is only applied when the node is on the special path!

$$
s_{i}^{1}, t_{i}^{1}
$$

$G\left(s_{i}^{0}\right) \oplus\left(t_{0}^{i} \cdot C W\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}$

$$
G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

DPF construction

s_{i}^{0}, t_{i}^{0}
$G\left(s_{i}^{0}\right) \oplus\left(t_{0}^{i} \cdot C W\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}$

s_{0}^{L}, t_{0}^{L}

$$
G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

DPF construction

$G\left(s_{i}^{0}\right) \oplus\left(t_{0}^{i} \cdot C W\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}$

$$
G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

DPF construction

$G\left(s_{i}^{0}\right) \oplus\left(t_{0}^{i} \cdot C W\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}$

$$
G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

DPF construction

$$
54
$$

$$
\stackrel{t_{i}=t_{i}^{0} \oplus t_{i}^{1}=1}{\longleftrightarrow}
$$

$G\left(s_{i}^{0}\right) \oplus\left(t_{0}^{i} \cdot C W\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}$

$$
G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

$C W=$

DPF construction

$\stackrel{t_{i}}{ }=t_{i}^{0} \oplus t_{i}^{1}=1$

$G\left(s_{i}^{0}\right) \oplus\left(t_{0}^{i} \cdot C W\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}$

$$
G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

$C W=s^{L}$

DPF construction

$G\left(s_{i}^{0}\right) \oplus\left(t_{0}^{i} \cdot C W\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}$

$$
G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

$C W=s^{L} \| t^{L}$

DPF construction

$$
m_{4}^{4}
$$

$$
t_{i}=t_{i}^{0} \oplus t_{i}^{1}=1
$$

$$
s_{i}^{1}, t_{i}^{1}
$$

$$
G\left(s_{i}^{0}\right) \oplus\left(t_{0}^{i} \cdot C W\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R} \quad G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

$$
C W=s^{L}\left\|t^{L}\right\| s^{R} \oplus s^{\prime}
$$

DPF construction

$$
s_{1}^{1}, t_{i}^{\prime}
$$

$$
G\left(s_{i}^{0}\right) \oplus\left(t_{0}^{i} \cdot C W\right)=s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R} \quad G\left(s_{i}^{1}\right) \oplus\left(t_{1}^{i} \cdot C W\right)=s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}
$$

$$
C W=s^{L}\left\|t^{L}\right\| s^{R} \oplus s^{\prime} \| t^{R} \oplus 1
$$

DPF construction

If reached leaf node, control bit t is either 0 or 1, and an additional CW is added to select β based on the value of the control bit

DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group}
element of \mathbb{G}.(See Figure 3.)
Gen``}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
    1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
4: for }i=1\mathrm{ to }n\mathrm{ do
5: for }\mp@subsup{s}{0}{L}||\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}|\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}||\mp@subsup{t}{1}{L}|\mp@subsup{s}{1}{R}||\mp@subsup{t}{1}{R}\leftarrowG(\mp@subsup{s}{1}{(i-1)})
6: if 的=0 then Keep }\leftarrowL,\mathrm{ Lose }\leftarrow
7:}\quad\mathrm{ else Keep }\leftarrowR,\mathrm{ Lose }\leftarrow
8: end if
9:
10: }\quad\mp@subsup{t}{CW}{L}\leftarrow\mp@subsup{t}{0}{L}\oplus\mp@subsup{t}{1}{L}\oplus\mp@subsup{\alpha}{i}{}\oplus1\mathrm{ and }\mp@subsup{t}{CW}{R}\leftarrow\mp@subsup{t}{0}{R}\oplus\mp@subsup{t}{1}{R}\oplus\mp@subsup{\alpha}{i}{
11:}\quadC\mp@subsup{W}{}{(i)}\leftarrow\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
12:
13:
14: end for
15:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+\operatorname{Convert}(\mp@subsup{s}{1}{(n)})]\in\mathbb{G
16: Let }\mp@subsup{k}{b}{}=\mp@subsup{s}{b}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{k}{1}{
Eval}\mp@subsup{|}{}{\bullet}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
    2: for i=1 to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
    4. }\quad\mp@subsup{\tau}{}{(i)}\leftarrowG(\mp@subsup{s}{}{(i-1)})\oplus(\mp@subsup{t}{}{(i-1)}\cdot[\mp@subsup{s}{CW}{\prime}|\mp@subsup{t}{CW}{L}|\mp@subsup{s}{CW}{}||\mp@subsup{t}{CW}{R}]
5:}\quad\mathrm{ Parse }\mp@subsup{\tau}{}{(i)}=\mp@subsup{s}{}{L}||\mp@subsup{t}{}{L}|\mp@subsup{s}{}{R}|\mp@subsup{t}{}{R}\in{0,1\mp@subsup{}}{}{2(\lambda+1)
6: if }\mp@subsup{x}{i}{}=0\mathrm{ then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{L
7: else s}\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{R},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{R
8: end if
8: end
10: return (-1)}\mp@subsup{)}{}{b}\cdot[\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}.(See Figure 3.)
Gen}\mp@subsup{}{}{\bullet}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
    1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
    4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}||\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}||\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}|\mp@subsup{t}{1}{L}||\mp@subsup{s}{1}{R}|\mp@subsup{t}{1}{R}\leftarrowG(\mp@subsup{s}{1}{(i-1)})
6: if \alpha}=0\mathrm{ then Keep }\leftarrowL,\mathrm{ Lose }\leftarrow
7: }\quad\mathrm{ else Keep }\leftarrowR,\mathrm{ Lose }\leftarrow
8: end if
9: 
t}\mp@subsup{t}{CW}{L}\leftarrow\mp@subsup{t}{0}{L}\oplus\mp@subsup{t}{1}{L}\oplus\mp@subsup{\alpha}{i}{}\oplus1\mathrm{ and }\mp@subsup{t}{CW}{R}\leftarrow\mp@subsup{t}{0}{R}\oplus\mp@subsup{t}{1}{R}\oplus\mp@subsup{\alpha}{i}{
11:}\quadC\mp@subsup{W}{}{(i)}\leftarrow\mp@subsup{s}{CW}{}||\mp@subsup{t}{CW}{L}||\mp@subsup{t}{CW}{R
12:
13:
14: end for
15:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+\operatorname{Convert}(\mp@subsup{s}{1}{(n)})]\in\mathbb{G
16: Let }\mp@subsup{k}{b}{}=\mp@subsup{s}{b}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{k}{1}{
Eval`}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let t(0)}=b\mathrm{ .
    2: for }i=1\mathrm{ to }n\mathrm{ do
    3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
        \tau
    5: Parse }\mp@subsup{\tau}{}{(i)}=\mp@subsup{s}{}{L}|\mp@subsup{t}{}{L}|\mp@subsup{s}{}{R}|\mp@subsup{t}{}{R}\in{0,1\mp@subsup{}}{}{2(\lambda+1)
6: if }\mp@subsup{x}{i}{}=0\mathrm{ then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{L
7: else s}\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{R},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{R
8: end if
9: end for
10: return (-1)}\mp@subsup{)}{}{b}\cdot[\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}.}\mathrm{ (See Figure 3.)
Gen``}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random sol(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}||\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}|\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}||\mp@subsup{t}{1}{L}|\mp@subsup{s}{1}{R}||\mp@subsup{t}{1}{R}\leftarrowG(\mp@subsup{s}{1}{(i-1)})\mathrm{ .
6: if }\mp@subsup{\alpha}{i}{}=0\mathrm{ then Keep }\leftarrowL,\mathrm{ Lose }\leftarrow
6: 
8: end if
8: 
9:
12:
13:}\quad\mp@subsup{t}{b}{(i)}\leftarrow\mp@subsup{t}{b}{\mathrm{ Keep }}\oplus\mp@subsup{t}{b}{(i-1)}\cdot\mp@subsup{t}{CW}{\mathrm{ Keep }}\mathrm{ for }b=0,
14: end for
15:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+\operatorname{Convert}(\mp@subsup{s}{1}{(n)})]\in\mathbb{G
16: Let }\mp@subsup{k}{b}{}=\mp@subsup{s}{b}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{k}{1}{}
Eval}\mp@subsup{|}{}{\bullet}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
2: for }i=1\mathrm{ to }n\mathrm{ do
3: }\quad\mathrm{ Parse }C\mp@subsup{W}{}{(i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
    4: }\quad\mp@subsup{\tau}{}{(i)}\leftarrowG(\mp@subsup{s}{}{(i-1)})\oplus(\mp@subsup{t}{}{(i-1)}\cdot[\mp@subsup{s}{CW}{\prime}|\mp@subsup{t}{CW}{L}|\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{R}]
5: Parse }\mp@subsup{\tau}{}{(i)}=\mp@subsup{s}{}{L}||\mp@subsup{t}{}{L}|\mp@subsup{s}{}{R}|\mp@subsup{t}{}{R}\in{0,1\mp@subsup{}}{}{2(\lambda+1)
6: if }\mp@subsup{x}{i}{}=0\mathrm{ then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{L
7: }\quad\mathrm{ else }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{R},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{R
8: end if
9: end for
10: return (-1)}\mp@subsup{)}{}{b}\cdot[C\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}.}\mathrm{ (See Figure 3.)
Gen``}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and tol
4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}||\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}|\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}||\mp@subsup{t}{1}{L}|\mp@subsup{s}{1}{R}||\mp@subsup{t}{1}{R}\leftarrowG(\mp@subsup{s}{1}{(i-1)})\mathrm{ .
6: if }\mp@subsup{\alpha}{i}{}=0\mathrm{ then Keep }\leftarrowL,\mathrm{ Lose }\leftarrow
6: 
8: end if
8: 
```



```
11:}\quadC\mp@subsup{W}{}{(i)}\leftarrow\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
11:
13:}\quad\mp@subsup{t}{b}{(i)}\leftarrow\mp@subsup{t}{b}{\mathrm{ Keep }}\oplus\mp@subsup{t}{b}{(i-1)}\cdot\mp@subsup{t}{CW}{\mathrm{ Keep }}\mathrm{ for }b=0,
14: end for
15:CW (n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+\operatorname{Convert}(\mp@subsup{s}{1}{(n)})]\in\mathbb{G}\quad\mathrm{ Leaf CW
16: Let }\mp@subsup{k}{b}{}=\mp@subsup{s}{b}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{k}{1}{}
Eval}\mp@subsup{|}{}{\bullet}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
2: for }i=1\mathrm{ to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
    4: }\quad\mp@subsup{\tau}{}{(i)}\leftarrowG(\mp@subsup{s}{}{(i-1)})\oplus(\mp@subsup{t}{}{(i-1)}\cdot[\mp@subsup{s}{CW}{\prime}|\mp@subsup{t}{CW}{L}|\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{R}]
5: Parse }\mp@subsup{\tau}{}{(i)}=\mp@subsup{s}{}{L}||\mp@subsup{t}{}{L}|\mp@subsup{s}{}{R}|\mp@subsup{t}{}{R}\in{0,1\mp@subsup{}}{}{2(\lambda+1)
6: if }\mp@subsup{x}{i}{}=0\mathrm{ then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{L
7: }\quad\mathrm{ else }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{R},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{R
8: end if
9: end for
10: return (-1)}\mp@subsup{)}{}{b}\cdot[\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}.}\mathrm{ (See Figure 3.)
Gen``}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random sol(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}||\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}|t\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}||\mp@subsup{t}{1}{L}|\mp@subsup{s}{1}{R}||\mp@subsup{t}{1}{R}\leftarrowG(\mp@subsup{s}{1}{(i-1)})\mathrm{ .
6: if \alpha}=0\mathrm{ then Keep }\leftarrowL,\mathrm{ Lose }\leftarrow
6: 
8:
lond if 
t}\mp@subsup{t}{W}{L}\leftarrow\mp@subsup{t}{0}{L}\oplus\mp@subsup{t}{1}{L}\oplus\mp@subsup{\alpha}{i}{}\oplus1\mathrm{ and }\mp@subsup{t}{CW}{R}\leftarrow\mp@subsup{t}{0}{R}\oplus\mp@subsup{t}{1}{R}\oplus\mp@subsup{\alpha}{i}{
CW
s
t,
. end for
5:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+C\mathrm{ Convert }(\mp@subsup{s}{1}{(n)})]\in\mathbb{G
Leaf CW
16: Let }\mp@subsup{k}{b}{}=\mp@subsup{s}{b}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{k}{1}{}
Eval}\mp@subsup{|}{}{\bullet}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
    2: for }i=1\mathrm{ to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
    4: }\quad\mp@subsup{\tau}{}{(i)}\leftarrowG(\mp@subsup{s}{}{(i-1)})\oplus(\mp@subsup{t}{}{(i-1)}\cdot[\mp@subsup{s}{CW}{\prime}|\mp@subsup{t}{CW}{L}|\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{R}]
5:}\quad\mathrm{ Parse }\mp@subsup{\tau}{}{(i)}=\mp@subsup{s}{}{L}||\mp@subsup{t}{}{L}|\mp@subsup{s}{}{R}|\mp@subsup{t}{}{R}\in{0,1\mp@subsup{}}{}{2(\lambda+1)
6: if }\mp@subsup{x}{i}{}=0\mathrm{ then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{L
7: else s}\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{R},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{R
8: end if
9: end for
10: return (-1)b}\cdot[\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}.}\mathrm{ (See Figure 3.)
Gen``}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}||\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}|t\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}||\mp@subsup{t}{1}{L}|\mp@subsup{s}{1}{R}||\mp@subsup{t}{1}{R}\leftarrowG(\mp@subsup{s}{1}{(i-1)})
6: if \alpha}=0\mathrm{ then Keep }\leftarrowL, Lose \leftarrow
7: }\quad\mathrm{ else Keep }\leftarrowR,\mathrm{ Lose }\leftarrow
8: end if
8: ll
    t
    CW
        s
        t _ { b } ^ { ( i ) } \leftarrow t _ { b } ^ { \text { Keep } } \oplus t _ { b } ^ { ( i - 1 ) } \cdot t _ { C W } ^ { \text { Keep } } \text { for } b = 0 , 1
    end for
    5:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+C\mathrm{ Convert ( }\mp@subsup{s}{1}{(n)})]\in\mathbb{G
6: Let }\mp@subsup{k}{b}{}=\mp@subsup{s}{b}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{k}{1}{}
Eval}\mp@subsup{|}{}{\bullet}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
    2: for }i=1\mathrm{ to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
    4. }\quad\mp@subsup{\tau}{}{(i)}\leftarrowG(\mp@subsup{s}{}{(i-1)})\oplus(\mp@subsup{t}{}{(i-1)}\cdot[\mp@subsup{s}{CW}{\prime}|\mp@subsup{t}{CW}{L}|\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{R}]
5: Parse }\mp@subsup{\tau}{}{(i)}=\mp@subsup{s}{}{L}||\mp@subsup{t}{}{L}|\mp@subsup{s}{}{R}|\mp@subsup{t}{}{R}\in{0,1\mp@subsup{}}{}{2(\lambda+1)
6: if }\mp@subsup{x}{i}{}=0\mathrm{ then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{L
7: }\quad\mathrm{ else }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{R},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{R
8: end if
9: end for
10: return (-1)}\mp@subsup{)}{}{b}\cdot[C\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}. (See Figure 3.)
Gen}\mp@subsup{}{}{\bullet}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
    1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}||\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}|\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and s}\mp@subsup{s}{1}{L}|\mp@subsup{t}{1}{L}||\mp@subsup{s}{1}{R}||\mp@subsup{t}{1}{R}\leftarrowG(\mp@subsup{s}{1}{(i-1)})\mathrm{ .
6: if \alpha
7: }\quad\mathrm{ else Keep }\leftarrowR\mathrm{ , Lose }\leftarrow
8: end if
9: }\quad\mp@subsup{s}{CW}{L}\leftarrow\mp@subsup{s}{0}{\mathrm{ Lose }}\oplus\mp@subsup{s}{1}{\mathrm{ Los}
s
    CW
        s
        b
    end for
CW
Leaf CW
16: Let }\mp@subsup{k}{b}{}=\mp@subsup{s}{b}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)
Key handed to each party
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{\kappa}{1}{
Eval}\mp@subsup{|}{}{\bullet}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
    2: for i=1 to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
        \tau
4:
6: if }\mp@subsup{x}{i}{}=0\mathrm{ then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{L
7: else s}\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{R},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{R
8: end if
9: end for
10: return (-1)}\mp@subsup{)}{}{b}\cdot[\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}. (See Figure 3.)
Gen``}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
    1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
    4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}||\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}|\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and s}\mp@subsup{s}{1}{L}|\mp@subsup{t}{1}{L}||\mp@subsup{s}{1}{R}||\mp@subsup{t}{1}{R}\leftarrowG(\mp@subsup{s}{1}{(i-1)})\mathrm{ .
6: if 泣=0 then Keep }\leftarrowL,\mathrm{ Lose }\leftarrow
7:}\quad\mathrm{ else Keep }\leftarrowR,\mathrm{ Lose }\leftarrow
8: end if
9: }\quad\mp@subsup{s}{CW}{L}\leftarrow\mp@subsup{s}{0}{\mathrm{ Lose }}\oplus\mp@subsup{s}{1}{\mathrm{ Lose}
l}\mp@subsup{s}{CW}{}\leftarrow\mp@subsup{s}{0}{Lose}\oplus\mp@subsup{s}{1}{\mathrm{ Lose }
    CW
        s
        b
    end for
C:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+\operatorname{Convert}(\mp@subsup{s}{1}{(n)})]\in\mathbb{G
Leaf CW
16: Let }\mp@subsup{k}{b}{}=\mp@subsup{s}{b}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)
Key handed to each party
17: return (k0,\mp@subsup{k}{1}{}
Eval}\mp@subsup{|}{}{\bullet}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
    2: for }i=1\mathrm{ to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
        \tau
4:
6: if }\mp@subsup{x}{i}{}=0\mathrm{ then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{L
7: }\quad\mathrm{ else }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{R},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{R
8: end if
9: end for
10: return (-1)}\mp@subsup{)}{}{b}\cdot[\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```

Key size?

DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}.}\mathrm{ (See Figure 3.)
Gen``}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
    1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
    4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}|\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}||\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}|\mp@subsup{t}{1}{L}|\mp@subsup{s}{1}{R}||t1 R \leftarrowG(s.i-1) ).
6: if }\mp@subsup{\alpha}{i}{}=0\mathrm{ then Keep }\leftarrowL,\mathrm{ Lose }\leftarrow
7: }\quad\mathrm{ else Keep }\leftarrowR,\mathrm{ Lose }\leftarrow
8: end if
9: }\quad\mp@subsup{s}{CW}{L}\leftarrow\mp@subsup{s}{0}{\mathrm{ Lose }}\oplus\mp@subsup{s}{1}{\mathrm{ LoS}
\mp@subsup{s}{CW}{}\leftarrow\mp@subsup{s}{0}{\mathrm{ Lose }}\oplus\mp@subsup{s}{1}{L}
CW
s _ { b } ^ { ( l ) } \leftarrow s _ { b } ^ { \text { neep } } \oplus t _ { b } ^ { ( l - 1 ) } \cdot s _ { C W } \text { for } b = 0 , 1
t _ { b } ^ { ( i ) } \leftarrow t _ { b } ^ { \text { Keep } } \oplus t _ { b } ^ { ( i - 1 ) } \cdot t _ { C W } ^ { \text { Keep } } \text { for } b = 0 , 1
4: end for
5:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+C\operatorname{Convert}(\mp@subsup{s}{1}{(n)})]\in\mathbb{G
Leaf CW
```



```
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{k}{1}{}
Eval}\mp@subsup{|}{}{\bullet}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
    2: for }i=1\mathrm{ to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
        \tau
        \mp@subsup{\tau}{}{(i)}\leftarrowG(\mp@subsup{s}{}{(i-1)})\oplus(\mp@subsup{t}{}{(i-1)}\cdot[\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{s}{CW}{}
5:
6: if 柱=0 then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L
8: end if
9: end for
10: return (-1)}\mp@subsup{)}{}{b}\cdot[C\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


Key size?

$O(\lambda n)$ where n is the number of bits of input

DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}.}\mathrm{ (See Figure 3.)
Gen``}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
    1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
    4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}|\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}||\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}|\mp@subsup{t}{1}{L}|\mp@subsup{s}{1}{R}||t1 R \leftarrowG(s.i-1) ).
6: if }\mp@subsup{\alpha}{i}{}=0\mathrm{ then Keep }\leftarrowL,\mathrm{ Lose }\leftarrow
7: }\quad\mathrm{ else Keep }\leftarrowR,\mathrm{ Lose }\leftarrow
8: end if
9: }\quad\mp@subsup{s}{CW}{L}\leftarrow\mp@subsup{s}{0}{\mathrm{ Lose }}\oplus\mp@subsup{s}{1}{\mathrm{ LoS}
\mp@subsup{s}{CW}{}\leftarrow\mp@subsup{s}{0}{\mathrm{ Lose }}\oplus\mp@subsup{s}{1}{L}
CW
s _ { b } ^ { ( l ) } \leftarrow s _ { b } ^ { \text { neep } } \oplus t _ { b } ^ { ( l - 1 ) } \cdot s _ { C W } \text { for } b = 0 , 1
t _ { b } ^ { ( i ) } \leftarrow t _ { b } ^ { \text { Keep } } \oplus t _ { b } ^ { ( i - 1 ) } \cdot t _ { C W } ^ { \text { Keep } } \text { for } b = 0 , 1
4: end for
5:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+C\operatorname{Convert}(\mp@subsup{s}{1}{(n)})]\in\mathbb{G
Leaf CW
```



```
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{k}{1}{}
Eval}\mp@subsup{|}{}{\bullet}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
    2: for }i=1\mathrm{ to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
        \tau
        \mp@subsup{\tau}{}{(i)}\leftarrowG(\mp@subsup{s}{}{(i-1)})\oplus(\mp@subsup{t}{}{(i-1)}\cdot[\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{s}{CW}{}
5:
6: if 柱=0 then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L
8: end if
9: end for
10: return (-1)}\mp@subsup{)}{}{b}\cdot[C\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


Key size?

$O(\lambda n)$ where n is the number of bits of input

DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}.}\mathrm{ (See Figure 3.)
Gen``}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
    1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
    4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}|\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}||\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}|\mp@subsup{t}{1}{L}|\mp@subsup{s}{1}{R}||t1 R \leftarrowG(s.i-1) ).
6: if \alpha
7: }\quad\mathrm{ else Keep }\leftarrowR,\mathrm{ Lose }\leftarrow
8: end if
9: }\quad\mp@subsup{s}{CW}{L}\leftarrow\mp@subsup{s}{0}{\mathrm{ Lose }}\oplus\mp@subsup{s}{1}{\mathrm{ Los}
s
CW
s
(i)}\leftarrow\mp@subsup{t}{b}{\mathrm{ Keep }}\oplus\mp@subsup{t}{b}{(i-1)}\cdot\mp@subsup{t}{CW}{\mathrm{ Keep }}\mathrm{ for }b=0,
13: }\quad\mp@subsup{t}{b}{
5:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+\operatorname{Convert}(\mp@subsup{s}{1}{(n)})]\in\mathbb{G
Leaf CW
```



```
17: return ( }\mp@subsup{k}{0}{},\mp@subsup{k}{1}{
Eval`}(b,\mp@subsup{k}{b}{},x)
    1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let }\mp@subsup{t}{}{(0)}=b\mathrm{ .
    2: for }i=1\mathrm{ to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
        \tau
        \mp@subsup{\tau}{}{(i)}\leftarrowG(\mp@subsup{s}{}{(i-1)})\oplus(\mp@subsup{t}{}{(i-1)}\cdot[\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{s}{CW}{}
5:
6: if 柱=0 then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L
8: end if
9: end for
10: return (-1)}\mp@subsup{)}{}{b}\cdot[C\operatorname{Convert}(\mp@subsup{s}{}{(n)})+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


Key size?

$O(\lambda n)$ where n is the number of bits of input

Security?

DPF construction

```
Optimized Distributed Point Function (Gen`, Eval`)
Let G:{0,1\mp@subsup{}}{}{\lambda}->{0,1\mp@subsup{}}{}{2(\lambda+1)}\mathrm{ be a pseudorandom generator.}
Let Convert}\mp@subsup{\mathbb{G}}{\mathbb{G}}{}:{0,1\mp@subsup{}}{}{\lambda}->\mathbb{G}\mathrm{ be a map converting a random }\lambda\mathrm{ -bit string to a pseudorandom group
element of \mathbb{G}.}\mathrm{ (See Figure 3.)
Gen}\mp@subsup{}{}{\bullet}(\mp@subsup{1}{}{\lambda},\alpha,\beta,\mathbb{G}
    1: Let }\alpha=\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\in{0,1\mp@subsup{}}{}{n}\mathrm{ be the bit decomposition of }
2: Sample random }\mp@subsup{s}{0}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and }\mp@subsup{s}{1}{(0)}\leftarrow{0,1\mp@subsup{}}{}{\lambda
3: Let }\mp@subsup{t}{0}{(0)}=0\mathrm{ and }\mp@subsup{t}{1}{(0)}=
    4: for }i=1\mathrm{ to }n\mathrm{ do
5: }\quad\mp@subsup{s}{0}{L}||\mp@subsup{t}{0}{L}|\mp@subsup{s}{0}{R}||\mp@subsup{t}{0}{R}\leftarrowG(\mp@subsup{s}{0}{(i-1)})\mathrm{ and }\mp@subsup{s}{1}{L}|t\mp@subsup{t}{1}{L}|\mp@subsup{s}{1}{R}|\mp@subsup{t}{1}{R}\leftarrowG(\mp@subsup{s}{1}{(i-1)})
6: if }\mp@subsup{\alpha}{i}{}=0\mathrm{ then Keep }\leftarrowL,\mathrm{ Lose }\leftarrow
7: else Keep }\leftarrowR\mathrm{ , Lose }\leftarrow
end if
9: }\quad\mp@subsup{s}{CW}{}\leftarrow\mp@subsup{s}{0}{\mathrm{ Lose }}\oplus\mp@subsup{s}{1}{\mathrm{ Los}
10: }\quad\begin{array}{l}{\mp@subsup{t}{CW}{L}}\\{\mp@subsup{t}{}{L}}\\{\leftarrow}
11:}\quadC\mp@subsup{W}{}{(i)}\leftarrow\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
2:
13:
14: end for
15:}C\mp@subsup{W}{}{(n+1)}\leftarrow(-1\mp@subsup{)}{}{\mp@subsup{t}{1}{n}}\cdot[\beta-\operatorname{Convert}(\mp@subsup{s}{0}{(n)})+\operatorname{Convert}(\mp@subsup{s}{1}{(n)})]\in\mathbb{G
Leaf CW
16: Let }\mp@subsup{k}{b}{}=\mp@subsup{s}{b}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ 17: return (ko,k})\quad\mathrm{ Key handed to each party
Eval`}(b,\mp@subsup{k}{b}{},x)
1: Parse }\mp@subsup{k}{b}{}=\mp@subsup{s}{}{(0)}|C\mp@subsup{W}{}{(1)}|\cdots|C\mp@subsup{W}{}{(n+1)}\mathrm{ , and let t(0)}=b
2: for }i=1\mathrm{ to }n\mathrm{ do
3: Parse CW (i)}=\mp@subsup{s}{CW}{}|\mp@subsup{t}{CW}{L}|\mp@subsup{t}{CW}{R
        \tau
5: Parse }\mp@subsup{\tau}{}{(i)}=\mp@subsup{s}{}{L}|\mp@subsup{t}{}{L}||\mp@subsup{s}{}{R}|\mp@subsup{t}{}{R}\in{0,1\mp@subsup{}}{}{2(\lambda+1)
6: if }\mp@subsup{x}{i}{}=0\mathrm{ then }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{L},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{L
7: }\quad\mathrm{ else }\mp@subsup{s}{}{(i)}\leftarrow\mp@subsup{s}{}{R},\mp@subsup{t}{}{(i)}\leftarrow\mp@subsup{t}{}{R
8: end if
9: end for
10: return (-1)b}\cdot[\operatorname{Convert(s}\mp@subsup{}{(n)}{(n)}+\mp@subsup{t}{}{(n)}\cdotC\mp@subsup{W}{}{(n+1)}]\in\mathbb{G
```


Key size?

$O(\lambda n)$ where n is the number of bits of input

Security?

k_{b} is pseudorandom because

1) seed is random 2) CW use up 3/4 generated randomness

Applications of DPF

- Private keyword search

How many times does
"Pittsburgh" appear?

Applications of DPF

- Private statistics collection

Today: anonymous messaging

Next time: Pung

- DPF can be used for Private Information Retrieval (PIR)
- Allows clients to fetch item i from a database of n items without revealing i

Generate keys for $f_{\alpha, \beta}$ where α is the index and $\beta=1$

Next time: Pung

Next time: Pung

- One weakness of DPF: requires non-colluding servers

Next time: Pung

- One weakness of DPF: requires non-colluding servers
- Is it possible to only use a single server that's fully untrusted?

Next time: Pung

- One weakness of DPF: requires non-colluding servers
- Is it possible to only use a single server that's fully untrusted?
- Single server computational private information retrieval

Next time: Pung

- One weakness of DPF: requires non-colluding servers
- Is it possible to only use a single server that's fully untrusted?
- Single server computational private information retrieval
- Is it possible to reduce the cost of a retrieval?

Next time: Pung

- One weakness of DPF: requires non-colluding servers
- Is it possible to only use a single server that's fully untrusted?
- Single server computational private information retrieval
- Is it possible to reduce the cost of a retrieval?
- Batching queries together for better throughput

