Function Secret Sharing, Distributed Point Functions

Slides adapted from <u>here</u>, <u>here</u>

• Allows a dealer to split a function f is $x, f(x) = \sum_{i=1}^{n} f_i(x)$

• Allows a dealer to split a function f into <u>function shares</u> f_i such that for any input

- Allows a dealer to split a function f in $x, f(x) = \sum_{i=1}^{n} f_i(x)$
- Function shares must be

• Allows a dealer to split a function f into <u>function shares</u> f_i such that for any input

- $x, f(x) = \sum_{i=1}^{n} f_i(x)$
- Function shares must be
 - Succinct otherwise one could trivially share the truth table of f

• Allows a dealer to split a function f into function shares f_i such that for any input

- $x, f(x) = \sum_{i=1}^{n} f_i(x)$
- Function shares must be
 - Succinct otherwise one could trivially share the truth table of f

• Allows a dealer to split a function f into function shares f_i such that for any input

Secret - function shares should not reveal anything about the function f

- $x, f(x) = \sum_{i=1}^{n} f_i(x)$
- Function shares must be
 - Succinct otherwise one could trivially share the truth table of f
- the full dataset

• Allows a dealer to split a function f into function shares f_i such that for any input

Secret - function shares should not reveal anything about the function f

Setting: multiple servers with some collusion threshold, each holding a copy of

- keys (k_1, \cdots, k_m)
- group element $y_i \in \mathbb{G}$ (the value of $f_i(x)$)

• Gen $(1^{\lambda}, \hat{f})$ is a PPT key generation algorithm, which outputs an *m*-tuple of

• Eval (i, k_i, x) is a polynomial-time evaluation algorithm, which on input $i \in [m]$ (party index), k_i (key defining the function share f_i), outputs a

function $f: \{0,1\}^n \to \mathbb{G}$ such that

• A point function $f_{\alpha,\beta}$ for $\alpha = \in \{0,1\}^n$ and $\beta \in \mathbb{G}$, is defined to be the

- function $f: \{0,1\}^n \to \mathbb{G}$ such that
 - $f(\alpha) = \beta$

• A point function $f_{\alpha,\beta}$ for $\alpha = \in \{0,1\}^n$ and $\beta \in \mathbb{G}$, is defined to be the

- function $f: \{0,1\}^n \to \mathbb{G}$ such that
 - $f(\alpha) = \beta$
 - f(x) = 0 for $x \neq \alpha$

• A point function $f_{\alpha,\beta}$ for $\alpha = \in \{0,1\}^n$ and $\beta \in \mathbb{G}$, is defined to be the

• Let $G: \{0,1\}^{\lambda} \rightarrow \{0,1\}^{2\lambda}$ be a length-doubling pseudorandom generator

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a length-doubling pseudorandom generator
- <u>GGM-style pseudorandom function</u>:

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a length-doubling pseudorandom generator
- <u>GGM-style pseudorandom function</u>:
 - Given an output of G(s), can divide into two halves where $G(s) = G_0(s) | | G_1(s)$

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a length-doubling pseudorandom generator
- <u>GGM-style pseudorandom function</u>:
 - Given an output of G(s), can divide into two halves where $G(s) = G_0(s) | | G_1(s)$
 - If s is the root, then recursively applying G will result in a tree

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a length-doubling pseudorandom generator
- <u>GGM-style pseudorandom function</u>:
 - Given an output of G(s), can divide into two halves where $G(s) = G_0(s) | | G_1(s)$
 - If *s* is the root, then recursively applying G will result in a tree

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a length-doubling pseudorandom generator
- <u>GGM-style pseudorandom function</u>:
 - Given an output of G(s), can divide into two halves where $G(s) = G_0(s) | | G_1(s)$
 - If s is the root, then recursively applying G will result in a tree

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a length-doubling pseudorandom generator
- <u>GGM-style pseudorandom function</u>:
 - Given an output of G(s), can divide into two halves where $G(s) = G_0(s) | | G_1(s)$
 - If s is the root, then recursively applying G will result in a tree

G(S) $G_1(s)$

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a length-doubling pseudorandom generator
- <u>GGM-style pseudorandom function</u>:
 - Given an output of G(s), can divide into two halves where $G(s) = G_0(s) || G_1(s)$
 - If *s* is the root, then recursively applying *G* will result in a tree

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a length-doubling pseudorandom generator
- <u>GGM-style pseudorandom function</u>:
 - Given an output of G(s), can divide into two halves where $G(s) = G_0(s) | | G_1(s)$
 - If s is the root, then recursively applying G will result in a tree

• <u>A two-party, tree-based scheme</u> with two keys, k_0, k_1

- <u>A two-party, tree-based scheme</u> with two keys, k_0, k_1
- for the special input α

• Starting point is the GGM-style binary tree, but have a special evaluation path

- <u>A two-party, tree-based scheme</u> with two keys, k_0, k_1
- for the special input α
- Invariant for each node

Starting point is the GGM-style binary tree, but have a special evaluation path

- <u>A two-party, tree-based scheme</u> with two keys, k_0, k_1
- for the special input α
- Invariant for each node
 - Each node has a seed, and a control bit

Starting point is the GGM-style binary tree, but have a special evaluation path

- <u>A two-party, tree-based scheme</u> with two keys, k_0, k_1
- for the special input α
- Invariant for each node
 - Each node has a seed, and a control bit
 - Outside of special path: labels on the two trees are *identical*

Starting point is the GGM-style binary tree, but have a special evaluation path

- <u>A two-party, tree-based scheme</u> with two keys, k_0, k_1
- for the special input α
- Invariant for each node \bullet
 - Each node has a seed, and a control bit
 - Outside of special path: labels on the two trees are *identical*
 - independent, and two control bits are different

Starting point is the GGM-style binary tree, but have a special evaluation path

• On the special path: seeds are indistinguishable from being random and

• Let $G: \{0,1\}^{\lambda} \rightarrow \{0,1\}^{2\lambda+2}$ be a PRG, and let [s] denote an additive secret

sharing among two parties where the shares are s_0, s_1 , and that $s = s_0 \oplus s_1$

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda+2}$ be a PRG, and let [s] denote an additive secret sharing among two parties where the shares are s_0, s_1 , and that $s = s_0 \oplus s_1$
- Relies on two insights: properties of additive secret sharing specific to two parties

- Let $G : \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda+2}$ be a PRG, and let [s] denote an additive secret sharing among two parties where the shares are s_0, s_1 , and that $s = s_0 \oplus s_1$
- Relies on two insights: properties of additive secret sharing specific to two parties
 - Weak homomorphism: $G([s]) = (G(s_0), G(s_1))$ extends

- Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda+2}$ be a PRG, and let [s] denote an additive secret sharing among two parties where the shares are s_0, s_1 , and that $s = s_0 \oplus s_1$
- Relies on two insights: properties of additive secret sharing specific to two parties
 - Weak homomorphism: $G([s]) = (G(s_0), G(s_1))$ extends
 - Shares of the $0\mathchar{-}string$ into shares of a longer $0\mathchar{-}string.$ Why?

- Let $G: \{0,1\}^{\lambda} \rightarrow \{0,1\}^{2\lambda+2}$ be a PRG, and let [s] denote an additive secret sharing among two parties where the shares are s_0, s_1 , and that $s = s_0 \oplus s_1$
- Relies on two insights: properties of additive secret sharing specific to two parties
 - Weak homomorphism: $G([s]) = (G(s_0), G(s_1))$ extends
 - Shares of the 0-string into shares of a longer 0-string. Why? $s = 0 \rightarrow s_0 = s_1$

- Let $G: \{0,1\}^{\lambda} \rightarrow \{0,1\}^{2\lambda+2}$ be a PRG, and let [s] denote an additive secret sharing among two parties where the shares are s_0, s_1 , and that $s = s_0 \oplus s_1$
- Relies on two insights: properties of additive secret sharing specific to two parties
 - Weak homomorphism: $G([s]) = (G(s_0), G(s_1))$ extends
 - Shares of the 0-string into shares of a longer 0-string. Why? $s = 0 \rightarrow s_0 = s_1$
 - Shares of a random seed s into shares of a longer pseudorandom string S

- Let $G: \{0,1\}^{\lambda} \rightarrow \{0,1\}^{2\lambda+2}$ be a PRG, and let [s] denote an additive secret sharing among two parties where the shares are s_0, s_1 , and that $s = s_0 \oplus s_1$ • Relies on two insights: properties of additive secret sharing specific to two
- parties
 - Weak homomorphism: $G([s]) = (G(s_0), G(s_1))$ extends
 - Shares of the 0-string into shares of a longer 0-string. Why? $s = 0 \rightarrow s_0 = s_1$
 - Shares of a random seed s into shares of a longer pseudorandom string S
 - Additive homomorphism: given shares [s], [t] of length λ and 1, respectively, and a public correction word CW, one can locally compute shares of $[s \oplus t \cdot CW]$

- Let $G: \{0,1\}^{\lambda} \rightarrow \{0,1\}^{2\lambda+2}$ be a PRG, and let [s] denote an additive secret sharing among two parties where the shares are s_0, s_1 , and that $s = s_0 \oplus s_1$ • Relies on two insights: properties of additive secret sharing specific to two
- parties
 - Weak homomorphism: $G([s]) = (G(s_0), G(s_1))$ extends
 - Shares of the 0-string into shares of a longer 0-string. Why? $s = 0 \rightarrow s_0 = s_1$
 - Shares of a random seed s into shares of a longer pseudorandom string S
 - Additive homomorphism: given shares [s], [t] of length λ and 1, respectively, and a public correction word CW, one can locally compute shares of $[s \oplus t \cdot CW]$ *t*'s value chooses whether CW is applied to s

 s_i is seed, t_i is control bit

$$s_i^1, t_i^1$$

$$G(s_i^1) = s_1^L, t_1^L, s_1^R, t_1^R$$

$$s_1^L, t_1^L$$

$$s_1^R, t_1^R$$

If node is off the special path, then the weak homomorphism will allow expansion of the 0 string into a longer 0 string, maintaining identical labels

 s_{i}^{0}, t_{i}^{0}

 $G(s_i^0) \bigoplus (t_0^i \cdot CW) = s_0^L, t_0^L, s_0^R, t_0^R$ s_0^R, t_0^R s_{0}^{L}, t_{0}^{L}

$$G(s_{i}^{1}, t_{i}^{1}) \bigoplus (t_{1}^{i} \cdot CW) = s_{1}^{L}, t_{1}^{L}, s_{1}^{R}, t_{1}^{R}$$

$$S_{1}^{L}, t_{1}^{L}$$

$$S_{1}^{R}, t_{1}^{R}$$

Because of additive homomorphism, **CW** is only applied when the node is

$$S_i^1, t_i^1$$

$$G(s_i^1) \oplus (t_1^i \cdot CW) = s_1^L, t_1^L, s_1^R, t_1^R$$

 s_{i}^{0}, t_{i}^{0}

 $G(s_i^0) \oplus (t_0^i \cdot CW) = s_0^L, t_0^L, s_0^R, t_0^R$ s_0^R, t_0^R s_{0}^{L}, t_{0}^{L}

$$s_{i}^{1}, t_{i}^{1}$$

$$G(s_i^1) \bigoplus (t_1^i \cdot CW) = s_1^L, t_1^L, s_1^R, t_1^R$$

$$DPF co$$

$$s_i^0, t_i^0$$

$$G(s_i^0) \oplus (t_0^i \cdot CW) = s_0^L, t_0^L, s_0^R, t_0^R$$

$$s_0^L, t_0^L$$

$$s_0^R, t_0^R$$

$$DPF collins
$$s_{i}^{0}, t_{i}^{0} \qquad t_{i} = t_{i}^{0}$$

$$G(s_{i}^{0}) \bigoplus (t_{0}^{i} \cdot CW) = s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}$$

$$s_{0}^{L}, t_{0}^{L} \qquad s_{0}^{R}, t_{0}^{R}$$$$

DPF CO

$$s_{i}^{0}, t_{i}^{0} \qquad t_{i} = t_{i}^{0}$$

$$G(s_{i}^{0}) \oplus (t_{0}^{i} \cdot CW) = s_{0}^{L}, t_{0}^{L}, s_{0}^{R}, t_{0}^{R}$$

$$s_{0}^{L}, t_{0}^{L} \qquad s_{0}^{R}, t_{0}^{R}$$
If reached leaf node,

based on the value of the control bit

control bit t is either 0 or 1, and an additional CW is added to select β

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $\mathsf{Convert}_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) $\operatorname{Gen}^{\bullet}(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L \ \left| \left| \ s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \ \text{and} \ s_1^L ||t_1^L \ \left| \right| \ s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: 14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \mathsf{Convert}(s_0^{(n)}) + \mathsf{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ 17: return (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do 3: Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ 4: $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ 5: Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^R \in \{0,1\}^{2(\lambda+1)}$ if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $Convert_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) Gen[•] $(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L \ \Big| \Big| \ s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \ \text{and} \ s_1^L ||t_1^L \ \Big| \Big| \ s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: $\mathbf{end} \ \mathbf{if}$ 8: $s_{CW} \leftarrow s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}} \\ t_{CW}^L \leftarrow t_0^L \oplus t_1^L \oplus \alpha_i \oplus 1 \text{ and } t_{CW}^R \leftarrow t_0^R \oplus t_1^R \oplus \alpha_i \\ CW^{(i)} \leftarrow s_{CW} ||t_{CW}^L||t_{CW}^R$ 9: 10: 11: $s_b^{(i)} \leftarrow s_b^{\mathsf{keep}} \oplus t_b^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_b^{(i)} \leftarrow t_b^{\mathsf{Keep}} \oplus t_b^{(i-1)} \cdot t_{CW}^{\mathsf{Keep}} \text{ for } b = 0, 1$ 13: 14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \text{Convert}(s_0^{(n)}) + \text{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ 17: return (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ 5: Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^R \in \{0,1\}^{2(\lambda+1)}$ if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $\mathsf{Convert}_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) $\operatorname{Gen}^{\bullet}(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| \ s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| \ s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \gets s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $t_{CW}^{L} \leftarrow t_{0}^{L} \oplus t_{1}^{L} \oplus \alpha_{i} \oplus 1 \text{ and } t_{CW}^{R} \leftarrow t_{0}^{R} \oplus t_{1}^{R} \oplus \alpha_{i}$ $CW^{(i)} \leftarrow s_{CW} ||t_{CW}^{L}||t_{CW}^{R}$ 10:11: $s_b^{(i)} \leftarrow s_b^{\text{keep}} \oplus t_b^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_b^{(i)} \leftarrow t_b^{\mathsf{Keep}} \oplus t_b^{(i-1)} \cdot t_{CW}^{\mathsf{Keep}} \text{ for } b = 0, 1$ 13: 14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \text{Convert}(s_0^{(n)}) + \text{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ 17: return (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^{\tilde{R}} \in \{0,1\}^{2(\lambda+1)}$ 5:if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $\mathsf{Convert}_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) Gen[•] $(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \leftarrow s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $t_{CW}^{L} \leftarrow t_{0}^{L} \oplus t_{1}^{L} \oplus \alpha_{i} \oplus 1 \text{ and } t_{CW}^{R} \leftarrow t_{0}^{R} \oplus t_{1}^{R} \oplus \alpha_{i}$ $CW^{(i)} \leftarrow s_{CW} ||t_{CW}^{L}||t_{CW}^{R}$ 10:11: $s_b^{(i)} \leftarrow s_b^{\mathsf{keep}} \oplus t_b^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_b^{(i)} \leftarrow t_b^{\mathsf{Keep}} \oplus t_b^{(i-1)} \cdot t_{CW}^{\mathsf{Keep}} \text{ for } b = 0, 1$ 13: 14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \mathsf{Convert}(s_0^{(n)}) + \mathsf{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ 17: return (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^{\tilde{R}} \in \{0, 1\}^{2(\lambda+1)}$ 5:if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $\mathsf{Convert}_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) $\operatorname{Gen}^{\bullet}(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \gets s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $t_{CW}^{\tilde{L}} \leftarrow t_0^{\tilde{L}} \oplus t_1^{\tilde{L}} \oplus \alpha_i \oplus 1 \text{ and } t_{CW}^{R} \leftarrow t_0^{R} \oplus t_1^{R} \oplus \alpha_i$ $CW^{(i)} \leftarrow s_{CW} ||t_{CW}^{L}||t_{CW}^{R}$ 10:11: $s_b^{(i)} \leftarrow s_b^{\mathsf{keep}} \oplus t_b^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_{b}^{(i)} \leftarrow t_{b}^{\mathsf{Keep}} \oplus t_{b}^{(i-1)} \cdot t_{CW}^{\mathsf{Keep}} \text{ for } b = 0, 1$ 13:14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \mathsf{Convert}(s_0^{(n)}) + \mathsf{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ 17: **return** (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| \ s^R ||t^R \in \{0,1\}^{2(\lambda+1)}$ 5: if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $\mathsf{Convert}_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) $\operatorname{Gen}^{\bullet}(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \leftarrow s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $t_{CW}^{\tilde{L}} \leftarrow t_0^{\tilde{L}} \oplus t_1^{\tilde{L}} \oplus \alpha_i \oplus 1 \text{ and } t_{CW}^{R} \leftarrow t_0^{R} \oplus t_1^{R} \oplus \alpha_i$ $CW^{(i)} \leftarrow s_{CW} ||t_{CW}^{L}||t_{CW}^{R}$ 10:11: $s_b^{(i)} \leftarrow s_b^{\mathsf{keep}} \oplus t_b^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_{b}^{(i)} \leftarrow t_{b}^{\text{Keep}} \oplus t_{b}^{(i-1)} \cdot t_{CW}^{\text{Keep}} \text{ for } b = 0, 1$ 13:14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \mathsf{Convert}(s_0^{(n)}) + \mathsf{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ 17: **return** (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| \ s^R ||t^R \in \{0,1\}^{2(\lambda+1)}$ 5: if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $\mathsf{Convert}_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) $\operatorname{Gen}^{\bullet}(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| \ s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| \ s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \leftarrow s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $t_{CW}^{L} \leftarrow t_{0}^{L} \oplus t_{1}^{L} \oplus \alpha_{i} \oplus 1 \text{ and } t_{CW}^{R} \leftarrow t_{0}^{R} \oplus t_{1}^{R} \oplus \alpha_{i}$ $CW^{(i)} \leftarrow s_{CW} ||t_{CW}^{L}||t_{CW}^{R}$ 10:11: $s_{b}^{(i)} \leftarrow s_{b}^{\mathsf{keep}} \oplus t_{b}^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_{b}^{(i)} \leftarrow t_{b}^{\mathsf{Keep}} \oplus t_{b}^{(i-1)} \cdot t_{CW}^{\mathsf{Keep}} \text{ for } b = 0, 1$ 13:14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \mathsf{Convert}(s_0^{(n)}) + \mathsf{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||\overline{CW^{(n+1)}}|$ Key handed to each party 17: **return** (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^R \in \{0, 1\}^{2(\lambda+1)}$ 5: if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $Convert_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) Gen[•] $(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| \ s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| \ s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \leftarrow s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $\begin{array}{c} t_{CW}^L \leftarrow t_0^L \oplus t_1^L \oplus \alpha_i \oplus 1 \text{ and } t_{CW}^R \leftarrow t_0^R \oplus t_1^R \oplus \alpha_i \\ CW^{(i)} \leftarrow s_{CW} || t_{CW}^L || t_{CW}^R \end{array}$ 10:11: $s_{b}^{(i)} \leftarrow s_{b}^{\mathsf{reep}} \oplus t_{b}^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_{b}^{(i)} \leftarrow t_{b}^{\mathsf{Keep}} \oplus t_{b}^{(i-1)} \cdot t_{CW}^{\mathsf{Keep}} \text{ for } b = 0, 1$ 13:14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \mathsf{Convert}(s_0^{(n)}) + \mathsf{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ Key handed to each party 17: **return** (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^R \in \{0, 1\}^{2(\lambda+1)}$ 5: if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Leaf CW

Key size?

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $Convert_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) Gen[•] $(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \leftarrow s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $t_{CW}^{L} \leftarrow t_{0}^{L} \oplus t_{1}^{L} \oplus \alpha_{i} \oplus 1 \text{ and } t_{CW}^{R} \leftarrow t_{0}^{R} \oplus t_{1}^{R} \oplus \alpha_{i}$ $CW^{(i)} \leftarrow s_{CW} ||t_{CW}^{L}||t_{CW}^{R}$ 10:11: $s_{b}^{(i)} \leftarrow s_{b}^{\mathsf{keep}} \oplus t_{b}^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_{h}^{(i)} \leftarrow t_{h}^{\text{Keep}} \oplus t_{h}^{(i-1)} \cdot t_{CW}^{\text{Keep}} \text{ for } b = 0, 1$ 13:14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \text{Convert}(s_0^{(n)}) + \text{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ Key handed to each party 17: **return** (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^R \in \{0, 1\}^{2(\lambda+1)}$ if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Leaf CW

Key size? $O(\lambda n)$ where *n* is the number of bits of input

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $Convert_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) Gen[•] $(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \leftarrow s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $t_{CW}^{L} \leftarrow t_{0}^{L} \oplus t_{1}^{L} \oplus \alpha_{i} \oplus 1 \text{ and } t_{CW}^{R} \leftarrow t_{0}^{R} \oplus t_{1}^{R} \oplus \alpha_{i}$ $CW^{(i)} \leftarrow s_{CW} ||t_{CW}^{L}||t_{CW}^{R}$ 10:11: $s_{b}^{(i)} \leftarrow s_{b}^{\mathsf{keep}} \oplus t_{b}^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_{h}^{(i)} \leftarrow t_{h}^{\text{Keep}} \oplus t_{h}^{(i-1)} \cdot t_{CW}^{\text{Keep}} \text{ for } b = 0, 1$ 13:14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \text{Convert}(s_0^{(n)}) + \text{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ Key handed to each party 17: **return** (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^R \in \{0, 1\}^{2(\lambda+1)}$ if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Leaf CW

Key size? $O(\lambda n)$ where *n* is the number of bits of input

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $Convert_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) Gen[•] $(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ 6: else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \leftarrow s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $t_{CW}^{L} \leftarrow t_{0}^{L} \oplus t_{1}^{L} \oplus \alpha_{i} \oplus 1 \text{ and } t_{CW}^{R} \leftarrow t_{0}^{R} \oplus t_{1}^{R} \oplus \alpha_{i}$ $CW^{(i)} \leftarrow s_{CW} ||t_{CW}^{L}||t_{CW}^{R}$ 10:11: $s_{b}^{(i)} \leftarrow s_{b}^{\mathsf{keep}} \oplus t_{b}^{(i-1)} \cdot s_{CW} \text{ for } b = 0, 1$ 12: $t_{h}^{(i)} \leftarrow t_{h}^{\text{Keep}} \oplus t_{h}^{(i-1)} \cdot t_{CW}^{\text{Keep}} \text{ for } b = 0, 1$ 13:14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \text{Convert}(s_0^{(n)}) + \text{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ Key handed to each party 17: **return** (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^R \in \{0, 1\}^{2(\lambda+1)}$ if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ 6: else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ 7: end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Leaf CW

Key size? $O(\lambda n)$ where *n* is the number of bits of input

Security?

Optimized Distributed Point Function (Gen[•], Eval[•]) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2(\lambda+1)}$ be a pseudorandom generator. Let $Convert_{\mathbb{G}} : \{0,1\}^{\lambda} \to \mathbb{G}$ be a map converting a random λ -bit string to a pseudorandom group element of \mathbb{G} . (See Figure 3.) Gen[•] $(1^{\lambda}, \alpha, \beta, \mathbb{G})$: 1: Let $\alpha = \alpha_1, \ldots, \alpha_n \in \{0, 1\}^n$ be the bit decomposition of α 2: Sample random $s_0^{(0)} \leftarrow \{0, 1\}^{\lambda}$ and $s_1^{(0)} \leftarrow \{0, 1\}^{\lambda}$ 3: Let $t_0^{(0)} = 0$ and $t_1^{(0)} = 1$ 4: for i = 1 to n do $s_0^L ||t_0^L|| s_0^R ||t_0^R \leftarrow G(s_0^{(i-1)}) \text{ and } s_1^L ||t_1^L|| s_1^R ||t_1^R \leftarrow G(s_1^{(i-1)}).$ if $\alpha_i = 0$ then Keep $\leftarrow L$, Lose $\leftarrow R$ else Keep $\leftarrow R$, Lose $\leftarrow L$ 7: end if 8: $s_{CW} \leftarrow s_0^{\mathsf{Lose}} \oplus s_1^{\mathsf{Lose}}$ 9: $\begin{array}{l} t_{CW}^{L} \leftarrow t_{0}^{\tilde{L}} \oplus t_{1}^{L} \oplus \alpha_{i} \oplus 1 \text{ and } t_{CW}^{R} \leftarrow t_{0}^{R} \oplus t_{1}^{R} \oplus \alpha_{i} \\ CW^{(i)} \leftarrow s_{CW} || t_{CW}^{L} || t_{CW}^{R} || t_{CW}^{R} \end{array}$ 10: 11: $s_b^{(i)} \leftarrow s_b^{\mathsf{keep}} \oplus t_b^{(i-1)} \cdot s_{CW}$ for b = 0, 112: $t_b^{(i)} \leftarrow t_b^{\mathsf{Keep}} \oplus t_b^{(i-1)} \cdot t_{CW}^{\mathsf{Keep}} \text{ for } b = 0, 1$ 13:14: end for 15: $CW^{(n+1)} \leftarrow (-1)^{t_1^n} \cdot \left[\beta - \text{Convert}(s_0^{(n)}) + \text{Convert}(s_1^{(n)})\right] \in \mathbb{G}$ 16: Let $k_b = s_b^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}|$ Key handed to each party 17: **return** (k_0, k_1) $\mathsf{Eval}^{\bullet}(b, k_b, x)$: 1: Parse $k_b = s^{(0)} ||CW^{(1)}|| \cdots ||CW^{(n+1)}$, and let $t^{(0)} = b$. 2: for i = 1 to n do Parse $CW^{(i)} = s_{CW} ||t_{CW}^L||t_{CW}^R$ $\tau^{(i)} \leftarrow G(s^{(i-1)}) \oplus (t^{(i-1)} \cdot [s_{CW}||t_{CW}^L||s_{CW}||t_{CW}^R])$ Parse $\tau^{(i)} = s^L ||t^L|| s^R ||t^R \in \{0, 1\}^{2(\lambda+1)}$ if $x_i = 0$ then $s^{(i)} \leftarrow s^L, t^{(i)} \leftarrow t^L$ else $s^{(i)} \leftarrow s^R, t^{(i)} \leftarrow t^R$ end if 8: 9: **end for** 10: return $(-1)^b \cdot \left[\mathsf{Convert}(s^{(n)}) + t^{(n)} \cdot CW^{(n+1)} \right] \in \mathbb{G}$

CW generation

Leaf CW

Key size?

 $O(\lambda n)$ where *n* is the number of bits of input

Security?

 k_h is pseudorandom because 1) seed is random 2) CW use up 3/4 generated randomness

Applications of DPF

• Private keyword search

How many times does "Pittsburgh" appear?

Applications of DPF

Private statistics collection

URL hits

google.com: v₁

facebook.com: *w*₁

Today: anonymous messaging

Next time: Pung

- DPF can be used for Private Information Retrieval (PIR)
 - Allows clients to fetch item *i* from a database of *n* items without revealing *i*

Generate keys for $f_{\alpha,\beta}$ where α is the index and $\beta=1$

Next time: Pung

Next time: Pung

One weakness of DPF: requires non-colluding servers
- One weakness of DPF: requires non-colluding servers
- Is it possible to only use a single server that's fully untrusted?

- One weakness of DPF: requires non-colluding servers
- Is it possible to only use a single server that's fully untrusted?
 - Single server computational private information retrieval

- One weakness of DPF: requires non-colluding servers
- Is it possible to only use a single server that's fully untrusted?
 - Single server computational private information retrieval
- Is it possible to reduce the cost of a retrieval?

- One weakness of DPF: requires non-colluding servers
- Is it possible to only use a single server that's fully untrusted?
 - Single server computational private information retrieval
- Is it possible to reduce the cost of a retrieval?
 - Batching queries together for better throughput