
Private information retrieval

Slides adapted from here, here, here

https://6893.csail.mit.edu/lec3.pdf
https://www.cs.bgu.ac.il/~beimel/Papers/PIRsurvey.pdf
https://6893.csail.mit.edu/lec7.pdf

Last class: FSS & DPF
• Function secret sharing: allows a dealer to split a function into function shares

 such that for any input , , where are succinct and secret

• Distributed point functions: a special function that can be efficiently shared

• Define a point function for and
where , and for

• Setting: multiple servers with some collusion threshold, each holding a copy of
the full dataset

f

fi x f(x) =
n

∑
i

fi(x) fi

fα,β : {0,1}n → 𝔾 α = ∈ {0,1}n β ∈ 𝔾
f(α) = β f(x) = 0 x ≠ α

Private information retrieval (PIR)
“Can a user query a database without the database learning the query?”

Many potential applications: DNS lookup, keyword searching, etc.

PIR definitions
• Database of bits

• Query , Answer , Decode

• Correctness: client gets the bit that it wants

• ,  

• Privacy: server should not learn anything about client’s bit

•

x n

(1n, i) → q (x, q) → a (a) → xi

∀n ∈ ℕ, ∀i ∈ [n], ∀x ∈ {0,1}n

Pr[Decode(a) = xi : q ← Query(1n, i), a ← Answer] = 1

∀n ∈ ℕ, ∀i, i′￼ ∈ [n], {q ← Query(1n, i)} ≈c {q ← Query(1n, i′￼)}

PIR via DPFs

x ∈ {0,1}n

x ∈ {0,1}n

q0

q1

DPF can efficiently share the point function
(, which is a vector where
th index is 1, and 0 everywhere else)

fi,1
Eval(q0) ⊕ Eval(q1) = ei
i

Client receives
a0 = < x, q0 > , a1 = < x, q1 >
xi = a0 + a1

Single server PIR
• Recap: the DDH problem

• Let be a cyclic group of prime order generated by

• Challenger computes

• is a Diffie-Hellman tuple

• Challenger gives to the adversary where

• Hard for adversary to guess

• An extra property: given a DH tuple , a tuple , then
 is a DH tuple if and only if is a DH tuple

𝔾 q g ∈ 𝔾

α, β, γ ← ℤq, u ← gα, v ← gβ, w0 ← gαβ, w1 ← gγ

(u, v, w0) = (gα, gβ, gαβ)

(u, v, wb) b ← {0,1}

b̂ = b

(u, v1, w1) (u, v2, w2)
(u, v1 ⋅ v2, w1 ⋅ w2) (u, v2, w2)

Single server PIR
• Server holds database

• Client inputs an index

• To query an index

• Client prepares triples where the th tuple is a
non-DH tuple

• Constructs , , , for

• for , otherwise choose random

• Server computes and sends and
(dot product)

• If is a DH tuple, then
, otherwise

x ∈ {0,1}n

i ∈ {1,⋯, n}

i

n i

ga gbj gcj j = 1,⋯, n

cj = abj j ≠ i cj

∏xjgbj ∏xjgcj

(ga, ∏xjgbj, ∏xjgcj)
xi = 0 xi = 1

ga

(gbj, gcj)

(∏
j

xigbj, ∏
j

xigcj)

x1

xn

x2

⋯

x3

(x1 ⋅ gb1, x1 ⋅ gc1)
(x2 ⋅ gb2, x2 ⋅ gc2)
(x3 ⋅ gb3, x3 ⋅ gc3)

(xn ⋅ gbn, xn ⋅ gcn)

 query, answerO(n) O(1)

Single server PIR with better communication

• Tradeoff between query length and answer length

• Restructure the database and view is as a matrix of
size

• Bit is represented , an element in the matrix

• Client constructs a PIR query with index

• Server applies PIR on each row, returns one
column (matrix multiplication)

• Client chooses the -th item

n × n

i (i1, i2)

i2

i1

n

n

Query for each rowi2

Return column i2

 query, answerO(n) O(n)

n

q a

Even better communication
• Insight: though the answer is of length

, the client only needs one element

• Idea: can view the answer to the query
as another database and run a second
PIR on this DB!

• Recursion results in a complexity that
is asymptotically smaller than for
every constant

• Tradeoff is more compute

n

nϵ

ϵ > 0

n1/3

n2/3

Two queries q1, q2

Return a2

n1/3

n1/3 n1/3

n2/3

q1

a1

a1 q2 a2

ORAM PIR

One client one server→ Multiple clients one server→

Reads and writes Traditionally only for reads

Memory contents changes
with every query

Linear server work per queryServer process in polylog(n)

Public, static DB

PIR is still expensive
• Communication cost

• Two-server PIR:

• Single-server PIR: from public key crypto assumptions

• Computation cost

• Batching: batch multiple queries together in a single scan

• Preprocessing: by offloading some work in a separate preprocessing phase,
and by storing extra information, the “online” cost of a retrieval is less than a
linear scan

O(log n)

polylog(n)

Today’s reading: Pung

Next time: Vuvuzela
• A very different approach to anonymous messaging

• No longer using a database abstraction

• Do not need to use heavy crypto -> much more scalable

• Network traffic & dead drop access patterns leak information

• Same chain of servers used to shuffle traffic & add cover traffic (all but
one can be compromised)

• Differential privacy offers a scalable way hiding metadata (albeit weaker)

