Private information retrieval

Slides adapted from <u>here</u>, <u>here</u>, <u>here</u>

Last class: FSS & DPF

- Function secret sharing: allows a dealer to split a function *f* into <u>function shares</u> f_i such that for any input $x, f(x) = \sum_{i=1}^{n} f_i(x)$, where f_i are succinct and secret
- Distributed point functions: a special function that can be efficiently shared
 - Define a point function $f_{\alpha,\beta}$: {0,1 where $f(\alpha) = \beta$, and f(x) = 0 for
- Setting: multiple servers with some collusion threshold, each holding a copy of the full dataset

$$n \to \mathbb{G}$$
 for $\alpha = \in \{0,1\}^n$ and $\beta \in \mathbb{G}$
 $x \neq \alpha$

Private information retrieval (PIR)

"Can a user query a database without the database learning the query?"

Many potential applications: DNS lookup, keyword searching, etc.

PIR definitions

- Database x of n bits
 - Query $(1^n, i) \rightarrow q$, Answer(x, q) -
- **Correctness:** client gets the bit that it wants
 - $\forall n \in \mathbb{N}, \forall i \in [n], \forall x \in \{0,1\}^n$ $Pr[Decode(a) = x_i : q \leftarrow Query$
- **Privacy:** server should not learn anything about client's bit
 - $\forall n \in \mathbb{N}, \forall i, i' \in [n], \{q \leftarrow \text{Query}(1^n, i)\} \approx_c \{q \leftarrow \text{Query}(1^n, i')\}$

$$\rightarrow a$$
, Decode $(a) \rightarrow x_i$

$$(1^n, i), a \leftarrow \text{Answer}] = 1$$

PIR via DPFs $x \in \{0,1\}^n$ $x \in \{0\}$

DPF can efficiently share the point function $f_{i,1}$ (Eval(q_0) \bigoplus Eval(q_1) = e_i , which is a vector where *i*th index is 1, and 0 everywhere else)

Client receives $a_0 = \langle x, q_0 \rangle$, $a_1 = \langle x, q_1 \rangle$ $x_i = a_0 + a_1$

Single server PIR

- Recap: the DDH problem
- Let \mathbb{G} be a cyclic group of prime order q generated by $g \in \mathbb{G}$
 - Challenger computes $\alpha, \beta, \gamma \leftarrow \bar{\lambda}$

•
$$(u, v, w_0) = (g^{\alpha}, g^{\beta}, g^{\alpha\beta})$$
 is a Dir

- Challenger gives (u, v, w_b) to the adversary where $b \leftarrow \{0, 1\}$
- Hard for adversary to guess $\hat{b} = b$
- An extra property: given a DH tuple (u, v_1, w_1) , a tuple (u, v_2, w_2) , then $(u, v_1 \cdot v_2, w_1 \cdot w_2)$ is a DH tuple if and only if (u, v_2, w_2) is a DH tuple

$$\mathbb{Z}_q, u \leftarrow g^{\alpha}, v \leftarrow g^{\beta}, w_0 \leftarrow g^{\alpha\beta}, w_1 \leftarrow g^{\gamma}$$

ffie-Hellman tuple

Single server PIR

- Server holds database $x \in \{0,1\}^n$
- Client inputs an index $i \in \{1, \dots, n\}$
- To query an index *i*
 - Client prepares n triples where the ith tuple is a non-DH tuple
 - Constructs g^a , g^{b_j} , g^{c_j} , for $j = 1, \dots, n$
 - $c_j = ab_j$ for $j \neq i$, otherwise choose random c_j
 - Server computes and sends $\prod x_j g^{b_j}$ and $\prod x_j g^{c_j}$ (dot product)
 - If $(g^a, \prod x_j g^{b_j}, \prod x_j g^{c_j})$ is a DH tuple, then $x_i = 0$, otherwise $x_i = 1$

O(n) query, O(1) answer

Single server PIR with better communication

- Tradeoff between query length and answer length
- Restructure the database and view is as a matrix of size $\sqrt{n} \times \sqrt{n}$
- Bit *i* is represented (i_1, i_2) , an element in the matrix
- Client constructs a PIR query with index i_2 \bullet
- Server applies PIR on each row, returns one column (matrix multiplication)
- Client chooses the i_1 -th item

 $O(\sqrt{n})$ query, $O(\sqrt{n})$ answer

Even better communication

- Insight: though the answer is of length \sqrt{n} , the client only needs one element
- Idea: can view the answer to the query as another database and run a second **PIR on this DB!**
- Recursion results in a complexity that is asymptotically smaller than n^{ϵ} for every constant $\epsilon > 0$
- Tradeoff is more compute

ORAM

Memory contents changes with every query

One client \rightarrow one server

Reads and writes

Server process in *polylog*(*n*)

PIR

Public, static DB

Multiple clients \rightarrow one server

Traditionally only for reads

Linear server work per query

- Communication cost
 - Two-server PIR: $O(\log n)$
 - Single-server PIR: polylog(n) from public key crypto assumptions
- Computation cost
 - Batching: batch multiple queries together in a single scan
 - linear scan

PIR is still expensive

• Preprocessing: by offloading some work in a separate preprocessing phase, and by storing extra information, the "online" cost of a retrieval is less than a

Today's reading: Pung

Next time: Vuvuzela

- A very different approach to anonymous messaging
- No longer using a database abstraction
- Do not need to use heavy crypto -> much more scalable
- Network traffic & dead drop access patterns leak information
 - Same chain of servers used to shuffle traffic & add cover traffic (all but one can be compromised)
 - Differential privacy offers a scalable way hiding metadata (albeit weaker)