DC-Net, Mixnet

Slides adapted from here, here

Logistics

- Project proposal due midnight tonight!
 - 1 2 pages, in the same latex format
 - Write about 3 things
 - Problem being tackled
 - Technical approach
 - Evaluation plan
- Mid-project check-in will be during the week of October 25

Logistics

- Paper reviews
 - A new optional section for asking clarifying questions (presenters should answer these in the presentation)
- In-class discussion:
 - Will dedicate more time (should start around 11 am)
 - Will keep group discussion
 - In-class participation is 30% of the grade

Dining cryptographers problem

- David Chaum's protocol from 1988
- Three cryptographers sitting around a table at dinner
- After dinner, they're told that someone has paid for dinner
- However, they wish to find out some information about who has paid for dinner
 - Is it one of the cryptographers, or the NSA?
 - They respect each other's privacy

DC-Net

- Each cryptographer has input $x_i \in \{0,1\}$
- Also flips a coin and shows the result to the cryptographer to their right
- Each person sees their own coin, plus one more coin from the person to the left
- If did not pay -> announce "same coins"/ "different coins", else announce opposite of that
- Odd # of differences = cryptographer paid, otherwise NSA paid
- Unconditionally secure anonymous broadcast
 - What are the collusion assumptions?

}

 $\begin{array}{c} x_0 \bigoplus r_0 \bigoplus r_2 \\ x_1 \bigoplus r_1 \bigoplus r_0 \\ x_2 \bigoplus r_2 \bigoplus r_1 \end{array}$

DC-Net

- Extending to more parties?
 - Each player *i* has input bit x_i
 - Each player *i* shares secrets $r_{i1}, \dots, r_{in} \in \{0, 1\}$ with all players

modulus instead

- Sending longer messages?
 - Heuristic idea: use the protocol to implement a shared anonymous broadcast channel; if collision detected, use exponential backoff

• XOR gives the sum $\sum x_i \mod 2$, but can extend to work in a larger

DC-Net

- Using DC-Net in practice for anonymous broadcasting is very expensive
 - Robustness: any party goes offline, then the messages are unrecoverable
 - Communication: each party needs to send *n* bits
 - Message recovery: n^2 total work (each party needs to reconstruct using n bits)

Mixnet

- Another idea proposed by Chaum
- Each party *i* wants to broadcast message $x_i \in \{0,1\}^l$
- All parties want to learn $\{x_1, \dots, x_n\}$, except in shuffled order
- Delegate work to k servers that repeatedly shuffle the messages

Mixnet

• Each player *i* encrypts message x_i using the servers' public keys

•
$$c_i = \operatorname{Enc}_{pk_1}(\operatorname{Enc}_{pk_2}(\operatorname{Enc}_{pk_3}(x_i)))$$

- Each server shuffles, decrypts, and passes to the next server
- Output is in a shuffled order such that no servers knows the final permutation

Mixnet

- Mixnet vs. DC-net
 - Per user communication: 1 cipher text vs. *n* bits
 - Total compute: n public key operations vs. n^2 field operations
 - Security: computational vs. information theoretic

Today's reading: anonymous messaging using Vuvuzela

Next (few) classes: secure multiparty computation

- DC-Net is actually a type of secure multiparty computation!
 - Multiple users, each has a private input
 - Protocol can securely compute the sum (XOR) function given "random shares" of an input bit
- In general, secure multi-party computation (MPC) is a way to jointly compute on different parties' private inputs, without revealing
 - Each party's private input
 - Intermediate results of the computation

Next class: secure aggregation for federated learning

- Many techniques for doing so: secret sharing, homomorphic encryption, garbled circuits, etc.
- Wednesday's reading
 - A different type of sharing compared to DC-net (robustness)
 - Setting is not quite MPC, and instead is something called "federated learning"
 - What are the security guarantees?
 - Is there any extra leakage?