
Zerocash Explained

Abhiram Kothapalli

Carnegie Mellon University

Abhiram Kothapalli (CMU) Zerocash Explained 1 / 25

The Zerocash Protocol

Zerocash was introduced by [SCG+14]

Proposed an anonymous digital currency that hides both transaction
participants and value.

It’s core technology is the Pinocchio zero-knowledge proof
system [PHGR13]

Zcash is the corresponding commercial realization that is now worth
$2.08B.

Abhiram Kothapalli (CMU) Zerocash Explained 2 / 25

The Zerocash Protocol

Zerocash was introduced by [SCG+14]

Proposed an anonymous digital currency that hides both transaction
participants and value.

It’s core technology is the Pinocchio zero-knowledge proof
system [PHGR13]

Zcash is the corresponding commercial realization that is now worth
$2.08B.

Abhiram Kothapalli (CMU) Zerocash Explained 2 / 25

The Zerocash Protocol

Zerocash was introduced by [SCG+14]

Proposed an anonymous digital currency that hides both transaction
participants and value.

It’s core technology is the Pinocchio zero-knowledge proof
system [PHGR13]

Zcash is the corresponding commercial realization that is now worth
$2.08B.

Abhiram Kothapalli (CMU) Zerocash Explained 2 / 25

The Zerocash Protocol

Zerocash was introduced by [SCG+14]

Proposed an anonymous digital currency that hides both transaction
participants and value.

It’s core technology is the Pinocchio zero-knowledge proof
system [PHGR13]

Zcash is the corresponding commercial realization that is now worth
$2.08B.

Abhiram Kothapalli (CMU) Zerocash Explained 2 / 25

The Zerocash Protocol

Zerocash was introduced by [SCG+14]

Proposed an anonymous digital currency that hides both transaction
participants and value.

It’s core technology is the Pinocchio zero-knowledge proof
system [PHGR13]

Zcash is the corresponding commercial realization that is now worth
$2.08B.

Abhiram Kothapalli (CMU) Zerocash Explained 2 / 25

Outline

1 The Decentralized Anonymous Payment Scheme Functionality

2 Constructing a Decentralized Anonymous Payment Scheme

3 Zerocash in the Wild

Abhiram Kothapalli (CMU) Zerocash Explained 3 / 25

1 The Decentralized Anonymous Payment Scheme Functionality

2 Constructing a Decentralized Anonymous Payment Scheme

3 Zerocash in the Wild

Abhiram Kothapalli (CMU) Zerocash Explained 4 / 25

The DAPS Functionality

A decentralized anonymous payment scheme is defined by three soundness
properties.

Ledger Indistinguishability: The ledger does not reveal transaction
amounts and transaction participants.

Transaction Non-Malleability: No adversary can modify a valid
transaction.

Balance: No adversary can own more money than minted or recieved
via payment.

Abhiram Kothapalli (CMU) Zerocash Explained 5 / 25

The DAPS Functionality

A decentralized anonymous payment scheme is defined by three soundness
properties.

Ledger Indistinguishability: The ledger does not reveal transaction
amounts and transaction participants.

Transaction Non-Malleability: No adversary can modify a valid
transaction.

Balance: No adversary can own more money than minted or recieved
via payment.

Abhiram Kothapalli (CMU) Zerocash Explained 5 / 25

The DAPS Functionality

A decentralized anonymous payment scheme is defined by three soundness
properties.

Ledger Indistinguishability: The ledger does not reveal transaction
amounts and transaction participants.

Transaction Non-Malleability: No adversary can modify a valid
transaction.

Balance: No adversary can own more money than minted or recieved
via payment.

Abhiram Kothapalli (CMU) Zerocash Explained 5 / 25

The DAPS Functionality

A decentralized anonymous payment scheme is defined by three soundness
properties.

Ledger Indistinguishability: The ledger does not reveal transaction
amounts and transaction participants.

Transaction Non-Malleability: No adversary can modify a valid
transaction.

Balance: No adversary can own more money than minted or recieved
via payment.

Abhiram Kothapalli (CMU) Zerocash Explained 5 / 25

1 The Decentralized Anonymous Payment Scheme Functionality

2 Constructing a Decentralized Anonymous Payment Scheme

3 Zerocash in the Wild

Abhiram Kothapalli (CMU) Zerocash Explained 6 / 25

The Strawman Construction

Baseline System:

Assume a blockchain maintaining BTC transactions.

Minting: Add a mechanic to lift 1 BTC into 1 ZEC.

Spending: Add a mechanic to lower 1 ZEC into 1 BTC while hiding
origin.

Abhiram Kothapalli (CMU) Zerocash Explained 7 / 25

The Strawman Construction: Minting

Suppose a user U wants to mint 1 ZEC.

U pays 1 BTC to a backing escrow pool.

U samples serial number sn, randomness r and computes

Commitment cm← com(sn; r)

Private Coin c← (r , sn, cm)

U broadcasts a mint transaction txMint = cm to the BTC blockchain.

If U has paid 1 BTC to escrow, BTC miners set

CMLIST = CMLIST‖cm

Abhiram Kothapalli (CMU) Zerocash Explained 8 / 25

The Strawman Construction: Minting

Suppose a user U wants to mint 1 ZEC.

U pays 1 BTC to a backing escrow pool.

U samples serial number sn, randomness r and computes

Commitment cm← com(sn; r)

Private Coin c← (r , sn, cm)

U broadcasts a mint transaction txMint = cm to the BTC blockchain.

If U has paid 1 BTC to escrow, BTC miners set

CMLIST = CMLIST‖cm

Abhiram Kothapalli (CMU) Zerocash Explained 8 / 25

The Strawman Construction: Minting

Suppose a user U wants to mint 1 ZEC.

U pays 1 BTC to a backing escrow pool.

U samples serial number sn, randomness r and computes

Commitment cm← com(sn; r)

Private Coin c← (r , sn, cm)

U broadcasts a mint transaction txMint = cm to the BTC blockchain.

If U has paid 1 BTC to escrow, BTC miners set

CMLIST = CMLIST‖cm

Abhiram Kothapalli (CMU) Zerocash Explained 8 / 25

The Strawman Construction: Minting

Suppose a user U wants to mint 1 ZEC.

U pays 1 BTC to a backing escrow pool.

U samples serial number sn, randomness r and computes

Commitment cm← com(sn; r)

Private Coin c← (r , sn, cm)

U broadcasts a mint transaction txMint = cm to the BTC blockchain.

If U has paid 1 BTC to escrow, BTC miners set

CMLIST = CMLIST‖cm

Abhiram Kothapalli (CMU) Zerocash Explained 8 / 25

The Strawman Construction: Minting

Suppose a user U wants to mint 1 ZEC.

U pays 1 BTC to a backing escrow pool.

U samples serial number sn, randomness r and computes

Commitment cm← com(sn; r)

Private Coin c← (r , sn, cm)

U broadcasts a mint transaction txMint = cm to the BTC blockchain.

If U has paid 1 BTC to escrow, BTC miners set

CMLIST = CMLIST‖cm

Abhiram Kothapalli (CMU) Zerocash Explained 8 / 25

The Strawman Construction: Spending

Suppose another user V wants to spend 1 private coin c := (r , sn, cm).

V writes a zkSNARK proof π asserting the following strawman
statement

Strawman Statement

For public (sn,CMLIST),
I know private r ,
such that com(sn, r) ∈ CMLIST.

V broadcasts a spend transaction txSpend = (sn, π).

BTC miners award V 1 BTC if π is valid and sn is not in a prior
spend transaction.

Anonymity holds because r is not revealed and therefore txSpend is not tied
to cm.

Abhiram Kothapalli (CMU) Zerocash Explained 9 / 25

The Strawman Construction: Spending

Suppose another user V wants to spend 1 private coin c := (r , sn, cm).

V writes a zkSNARK proof π asserting the following strawman
statement

Strawman Statement

For public (sn,CMLIST),
I know private r ,
such that com(sn, r) ∈ CMLIST.

V broadcasts a spend transaction txSpend = (sn, π).

BTC miners award V 1 BTC if π is valid and sn is not in a prior
spend transaction.

Anonymity holds because r is not revealed and therefore txSpend is not tied
to cm.

Abhiram Kothapalli (CMU) Zerocash Explained 9 / 25

The Strawman Construction: Spending

Suppose another user V wants to spend 1 private coin c := (r , sn, cm).

V writes a zkSNARK proof π asserting the following strawman
statement

Strawman Statement

For public (sn,CMLIST),
I know private r ,
such that com(sn, r) ∈ CMLIST.

V broadcasts a spend transaction txSpend = (sn, π).

BTC miners award V 1 BTC if π is valid and sn is not in a prior
spend transaction.

Anonymity holds because r is not revealed and therefore txSpend is not tied
to cm.

Abhiram Kothapalli (CMU) Zerocash Explained 9 / 25

The Strawman Construction: Spending

Suppose another user V wants to spend 1 private coin c := (r , sn, cm).

V writes a zkSNARK proof π asserting the following strawman
statement

Strawman Statement

For public (sn,CMLIST),
I know private r ,
such that com(sn, r) ∈ CMLIST.

V broadcasts a spend transaction txSpend = (sn, π).

BTC miners award V 1 BTC if π is valid and sn is not in a prior
spend transaction.

Anonymity holds because r is not revealed and therefore txSpend is not tied
to cm.

Abhiram Kothapalli (CMU) Zerocash Explained 9 / 25

The Strawman Construction: Spending

Suppose another user V wants to spend 1 private coin c := (r , sn, cm).

V writes a zkSNARK proof π asserting the following strawman
statement

Strawman Statement

For public (sn,CMLIST),
I know private r ,
such that com(sn, r) ∈ CMLIST.

V broadcasts a spend transaction txSpend = (sn, π).

BTC miners award V 1 BTC if π is valid and sn is not in a prior
spend transaction.

Anonymity holds because r is not revealed and therefore txSpend is not tied
to cm.

Abhiram Kothapalli (CMU) Zerocash Explained 9 / 25

Version II: Achieving a Sublinear Statement

Problem: With public input (sn,CMLIST), proof generation and
verification time grows linearly with |CMLIST|.

Solution: Store CMLIST in a Merkle tree and only make the root a part
of the statement.

Version II Statement

For public (sn, rt),
I know private (r , πmk),
such that Merkle proof πmk attests that com(sn, r) ∈ Tree(CMLIST).

Abhiram Kothapalli (CMU) Zerocash Explained 10 / 25

Version II: Achieving a Sublinear Statement

Problem: With public input (sn,CMLIST), proof generation and
verification time grows linearly with |CMLIST|.

Solution: Store CMLIST in a Merkle tree and only make the root a part
of the statement.

Version II Statement

For public (sn, rt),
I know private (r , πmk),
such that Merkle proof πmk attests that com(sn, r) ∈ Tree(CMLIST).

Abhiram Kothapalli (CMU) Zerocash Explained 10 / 25

Version II: Achieving a Sublinear Statement

Problem: With public input (sn,CMLIST), proof generation and
verification time grows linearly with |CMLIST|.

Solution: Store CMLIST in a Merkle tree and only make the root a part
of the statement.

Version II Statement

For public (sn, rt),
I know private (r , πmk),
such that Merkle proof πmk attests that com(sn, r) ∈ Tree(CMLIST).

Abhiram Kothapalli (CMU) Zerocash Explained 10 / 25

Version II: Achieving a Sublinear Statement

Problem: With public input (sn,CMLIST), proof generation and
verification time grows linearly with |CMLIST|.

Solution: Store CMLIST in a Merkle tree and only make the root a part
of the statement.

Version II Statement

For public (sn, rt),

I know private (r , πmk),
such that Merkle proof πmk attests that com(sn, r) ∈ Tree(CMLIST).

Abhiram Kothapalli (CMU) Zerocash Explained 10 / 25

Version II: Achieving a Sublinear Statement

Problem: With public input (sn,CMLIST), proof generation and
verification time grows linearly with |CMLIST|.

Solution: Store CMLIST in a Merkle tree and only make the root a part
of the statement.

Version II Statement

For public (sn, rt),
I know private (r , πmk),

such that Merkle proof πmk attests that com(sn, r) ∈ Tree(CMLIST).

Abhiram Kothapalli (CMU) Zerocash Explained 10 / 25

Version II: Achieving a Sublinear Statement

Problem: With public input (sn,CMLIST), proof generation and
verification time grows linearly with |CMLIST|.

Solution: Store CMLIST in a Merkle tree and only make the root a part
of the statement.

Version II Statement

For public (sn, rt),
I know private (r , πmk),
such that Merkle proof πmk attests that com(sn, r) ∈ Tree(CMLIST).

Abhiram Kothapalli (CMU) Zerocash Explained 10 / 25

Version III: Transferring Spending Rights

Problem: Suppose user U creates a coin c and sends it to V . How do we
ensure that U can no longer spend c.

Solution: Introduce ephemeral public-private address pairs.

Coins attached to a public key can only be spent or transferred using
the corresponding private key.

A POUR transaction transfers the value of coins attached to U’s
public key to coins attached to V ’s public key.

Key Challenge: The POUR transaction must hide the public keys.

Abhiram Kothapalli (CMU) Zerocash Explained 11 / 25

Version III: Transferring Spending Rights

Problem: Suppose user U creates a coin c and sends it to V . How do we
ensure that U can no longer spend c.

Solution: Introduce ephemeral public-private address pairs.

Coins attached to a public key can only be spent or transferred using
the corresponding private key.

A POUR transaction transfers the value of coins attached to U’s
public key to coins attached to V ’s public key.

Key Challenge: The POUR transaction must hide the public keys.

Abhiram Kothapalli (CMU) Zerocash Explained 11 / 25

Version III: Transferring Spending Rights

Problem: Suppose user U creates a coin c and sends it to V . How do we
ensure that U can no longer spend c.

Solution: Introduce ephemeral public-private address pairs.

Coins attached to a public key can only be spent or transferred using
the corresponding private key.

A POUR transaction transfers the value of coins attached to U’s
public key to coins attached to V ’s public key.

Key Challenge: The POUR transaction must hide the public keys.

Abhiram Kothapalli (CMU) Zerocash Explained 11 / 25

Version III: Transferring Spending Rights

Problem: Suppose user U creates a coin c and sends it to V . How do we
ensure that U can no longer spend c.

Solution: Introduce ephemeral public-private address pairs.

Coins attached to a public key can only be spent or transferred using
the corresponding private key.

A POUR transaction transfers the value of coins attached to U’s
public key to coins attached to V ’s public key.

Key Challenge: The POUR transaction must hide the public keys.

Abhiram Kothapalli (CMU) Zerocash Explained 11 / 25

Version III: Transferring Spending Rights

Problem: Suppose user U creates a coin c and sends it to V . How do we
ensure that U can no longer spend c.

Solution: Introduce ephemeral public-private address pairs.

Coins attached to a public key can only be spent or transferred using
the corresponding private key.

A POUR transaction transfers the value of coins attached to U’s
public key to coins attached to V ’s public key.

Key Challenge: The POUR transaction must hide the public keys.

Abhiram Kothapalli (CMU) Zerocash Explained 11 / 25

Creating Addresses

Suppose user U wants to create a new public-private address pair.

Sample random secret key ask.

Using ask as a seed compute apk ← PRFaddr
ask

(0).

Let the public-private address pair be

(apk, ask)

Abhiram Kothapalli (CMU) Zerocash Explained 12 / 25

Creating Addresses

Suppose user U wants to create a new public-private address pair.

Sample random secret key ask.

Using ask as a seed compute apk ← PRFaddr
ask

(0).

Let the public-private address pair be

(apk, ask)

Abhiram Kothapalli (CMU) Zerocash Explained 12 / 25

Creating Addresses

Suppose user U wants to create a new public-private address pair.

Sample random secret key ask.

Using ask as a seed compute apk ← PRFaddr
ask

(0).

Let the public-private address pair be

(apk, ask)

Abhiram Kothapalli (CMU) Zerocash Explained 12 / 25

Creating Addresses

Suppose user U wants to create a new public-private address pair.

Sample random secret key ask.

Using ask as a seed compute apk ← PRFaddr
ask

(0).

Let the public-private address pair be

(apk, ask)

Abhiram Kothapalli (CMU) Zerocash Explained 12 / 25

Modifying Coin Generation

Suppose user U, with public-private address pair (apk, ask), wants to create
a new coin.

Sample sn.

Sample s and compute commitment cm← com(v , apk, sn; s)

Let the new private coin be

c← (apk, v , sn, s, cm).

Problem 1: In order to mint, cm needs to be opened to reveal v .
However, this also reveals apk and sn.

Problem 2: If U knows sn it can track how the the coin is transferred on
the network.

Abhiram Kothapalli (CMU) Zerocash Explained 13 / 25

Modifying Coin Generation

Suppose user U, with public-private address pair (apk, ask), wants to create
a new coin.

Sample sn.

Sample s and compute commitment cm← com(v , apk, sn; s)

Let the new private coin be

c← (apk, v , sn, s, cm).

Problem 1: In order to mint, cm needs to be opened to reveal v .
However, this also reveals apk and sn.

Problem 2: If U knows sn it can track how the the coin is transferred on
the network.

Abhiram Kothapalli (CMU) Zerocash Explained 13 / 25

Modifying Coin Generation

Suppose user U, with public-private address pair (apk, ask), wants to create
a new coin.

Sample sn.

Sample s and compute commitment cm← com(v , apk, sn; s)

Let the new private coin be

c← (apk, v , sn, s, cm).

Problem 1: In order to mint, cm needs to be opened to reveal v .
However, this also reveals apk and sn.

Problem 2: If U knows sn it can track how the the coin is transferred on
the network.

Abhiram Kothapalli (CMU) Zerocash Explained 13 / 25

Modifying Coin Generation

Suppose user U, with public-private address pair (apk, ask), wants to create
a new coin.

Sample sn.

Sample s and compute commitment cm← com(v , apk, sn; s)

Let the new private coin be

c← (apk, v , sn, s, cm).

Problem 1: In order to mint, cm needs to be opened to reveal v .
However, this also reveals apk and sn.

Problem 2: If U knows sn it can track how the the coin is transferred on
the network.

Abhiram Kothapalli (CMU) Zerocash Explained 13 / 25

Modifying Coin Generation

Suppose user U, with public-private address pair (apk, ask), wants to create
a new coin.

Sample sn.

Sample s and compute commitment cm← com(v , apk, sn; s)

Let the new private coin be

c← (apk, v , sn, s, cm).

Problem 1: In order to mint, cm needs to be opened to reveal v .
However, this also reveals apk and sn.

Problem 2: If U knows sn it can track how the the coin is transferred on
the network.

Abhiram Kothapalli (CMU) Zerocash Explained 13 / 25

Modifying Coin Generation

Solution: Use nested commitments to bind values at different layers and
PRFs to refresh sn in each transfer.

Sample ρ and let sn← PRFsn
ask

(ρ).

Sample r and compute commitment k ← com(apk, ρ; r).

Sample s and compute commitment cm← com(v , k; s)

Let the new private coin be

c← (apk, v , ρ, r , s, cm).

Now cm can be opened to reveal v but still hide sn and apk.

Abhiram Kothapalli (CMU) Zerocash Explained 14 / 25

Modifying Coin Generation

Solution: Use nested commitments to bind values at different layers and
PRFs to refresh sn in each transfer.

Sample ρ and let sn← PRFsn
ask

(ρ).

Sample r and compute commitment k ← com(apk, ρ; r).

Sample s and compute commitment cm← com(v , k; s)

Let the new private coin be

c← (apk, v , ρ, r , s, cm).

Now cm can be opened to reveal v but still hide sn and apk.

Abhiram Kothapalli (CMU) Zerocash Explained 14 / 25

Modifying Coin Generation

Solution: Use nested commitments to bind values at different layers and
PRFs to refresh sn in each transfer.

Sample ρ and let sn← PRFsn
ask

(ρ).

Sample r and compute commitment k ← com(apk, ρ; r).

Sample s and compute commitment cm← com(v , k; s)

Let the new private coin be

c← (apk, v , ρ, r , s, cm).

Now cm can be opened to reveal v but still hide sn and apk.

Abhiram Kothapalli (CMU) Zerocash Explained 14 / 25

Modifying Coin Generation

Solution: Use nested commitments to bind values at different layers and
PRFs to refresh sn in each transfer.

Sample ρ and let sn← PRFsn
ask

(ρ).

Sample r and compute commitment k ← com(apk, ρ; r).

Sample s and compute commitment cm← com(v , k; s)

Let the new private coin be

c← (apk, v , ρ, r , s, cm).

Now cm can be opened to reveal v but still hide sn and apk.

Abhiram Kothapalli (CMU) Zerocash Explained 14 / 25

Modifying Coin Generation

Solution: Use nested commitments to bind values at different layers and
PRFs to refresh sn in each transfer.

Sample ρ and let sn← PRFsn
ask

(ρ).

Sample r and compute commitment k ← com(apk, ρ; r).

Sample s and compute commitment cm← com(v , k; s)

Let the new private coin be

c← (apk, v , ρ, r , s, cm).

Now cm can be opened to reveal v but still hide sn and apk.

Abhiram Kothapalli (CMU) Zerocash Explained 14 / 25

Modifying Coin Generation

Solution: Use nested commitments to bind values at different layers and
PRFs to refresh sn in each transfer.

Sample ρ and let sn← PRFsn
ask

(ρ).

Sample r and compute commitment k ← com(apk, ρ; r).

Sample s and compute commitment cm← com(v , k; s)

Let the new private coin be

c← (apk, v , ρ, r , s, cm).

Now cm can be opened to reveal v but still hide sn and apk.

Abhiram Kothapalli (CMU) Zerocash Explained 14 / 25

The Pour Operation

Suppose user U with keypair (aoldpk , a
old
sk) wants to transfer cold to public

keys anewpk,1 and anewpk,2.

U generates two coins cnew1 and cnew2 using anewpk,1 and anewpk,2 respectively.

U writes a zkSNARK proof π asserting the POUR statement.

U broadcasts a pour transaction

txPour = (rt, snold, cmnew
1 , cmnew

2 , π).

The ledger accepts txPour if sn has not been seen before.

Abhiram Kothapalli (CMU) Zerocash Explained 15 / 25

The Pour Operation

Suppose user U with keypair (aoldpk , a
old
sk) wants to transfer cold to public

keys anewpk,1 and anewpk,2.

U generates two coins cnew1 and cnew2 using anewpk,1 and anewpk,2 respectively.

U writes a zkSNARK proof π asserting the POUR statement.

U broadcasts a pour transaction

txPour = (rt, snold, cmnew
1 , cmnew

2 , π).

The ledger accepts txPour if sn has not been seen before.

Abhiram Kothapalli (CMU) Zerocash Explained 15 / 25

The Pour Operation

Suppose user U with keypair (aoldpk , a
old
sk) wants to transfer cold to public

keys anewpk,1 and anewpk,2.

U generates two coins cnew1 and cnew2 using anewpk,1 and anewpk,2 respectively.

U writes a zkSNARK proof π asserting the POUR statement.

U broadcasts a pour transaction

txPour = (rt, snold, cmnew
1 , cmnew

2 , π).

The ledger accepts txPour if sn has not been seen before.

Abhiram Kothapalli (CMU) Zerocash Explained 15 / 25

The Pour Operation

Suppose user U with keypair (aoldpk , a
old
sk) wants to transfer cold to public

keys anewpk,1 and anewpk,2.

U generates two coins cnew1 and cnew2 using anewpk,1 and anewpk,2 respectively.

U writes a zkSNARK proof π asserting the POUR statement.

U broadcasts a pour transaction

txPour = (rt, snold, cmnew
1 , cmnew

2 , π).

The ledger accepts txPour if sn has not been seen before.

Abhiram Kothapalli (CMU) Zerocash Explained 15 / 25

The Pour Operation

Suppose user U with keypair (aoldpk , a
old
sk) wants to transfer cold to public

keys anewpk,1 and anewpk,2.

U generates two coins cnew1 and cnew2 using anewpk,1 and anewpk,2 respectively.

U writes a zkSNARK proof π asserting the POUR statement.

U broadcasts a pour transaction

txPour = (rt, snold, cmnew
1 , cmnew

2 , π).

The ledger accepts txPour if sn has not been seen before.

Abhiram Kothapalli (CMU) Zerocash Explained 15 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)
I know private (cold, cnew1 , cnew2 , aoldsk , πmk)
such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)

I know private (cold, cnew1 , cnew2 , aoldsk , πmk)
such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)
I know private (cold, cnew1 , cnew2 , aoldsk , πmk)

such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)
I know private (cold, cnew1 , cnew2 , aoldsk , πmk)
such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)
I know private (cold, cnew1 , cnew2 , aoldsk , πmk)
such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)
I know private (cold, cnew1 , cnew2 , aoldsk , πmk)
such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)
I know private (cold, cnew1 , cnew2 , aoldsk , πmk)
such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)
I know private (cold, cnew1 , cnew2 , aoldsk , πmk)
such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)
I know private (cold, cnew1 , cnew2 , aoldsk , πmk)
such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

The Pour Statement

Pour Statement

For public (sn, cmnew
1 , cmnew

2 , rt)
I know private (cold, cnew1 , cnew2 , aoldsk , πmk)
such that

c.k = com(c.apk, c.ρ) and cm = com(c.v , c.k).

The address of the old secret key matches the address found in the
old coin.

The serial number found in the old coin is computed correctly.

Merkle proof πmk attests that cold.cm ∈ Tree(CMLIST).

cnew1 .v + cnew2 .v = cold.v .

Note that txPour = (rt, snold, cmnew
1 , cmnew

2 , π) does not reveal values or
public keys, and is therefore completely anonymous.

Abhiram Kothapalli (CMU) Zerocash Explained 16 / 25

How to Actually Send Coins

Suppose user U posts txPour = (rt, snold, cmnew
1 , cmnew

2 , π) on the
ledger.

User V can spend (or transfer) the value embedded in cmnew
i so long

as it can furnish the corresponding secret key and private coin cnewi .

Problem: How does V actually get cnewi ?

Solution: Append public-key encryption keypairs to address keypairs.

U encrypts cnewi against V ’s public encryption key.

U appends the result to txPour.

Abhiram Kothapalli (CMU) Zerocash Explained 17 / 25

How to Actually Send Coins

Suppose user U posts txPour = (rt, snold, cmnew
1 , cmnew

2 , π) on the
ledger.

User V can spend (or transfer) the value embedded in cmnew
i so long

as it can furnish the corresponding secret key and private coin cnewi .

Problem: How does V actually get cnewi ?

Solution: Append public-key encryption keypairs to address keypairs.

U encrypts cnewi against V ’s public encryption key.

U appends the result to txPour.

Abhiram Kothapalli (CMU) Zerocash Explained 17 / 25

How to Actually Send Coins

Suppose user U posts txPour = (rt, snold, cmnew
1 , cmnew

2 , π) on the
ledger.

User V can spend (or transfer) the value embedded in cmnew
i so long

as it can furnish the corresponding secret key and private coin cnewi .

Problem: How does V actually get cnewi ?

Solution: Append public-key encryption keypairs to address keypairs.

U encrypts cnewi against V ’s public encryption key.

U appends the result to txPour.

Abhiram Kothapalli (CMU) Zerocash Explained 17 / 25

How to Actually Send Coins

Suppose user U posts txPour = (rt, snold, cmnew
1 , cmnew

2 , π) on the
ledger.

User V can spend (or transfer) the value embedded in cmnew
i so long

as it can furnish the corresponding secret key and private coin cnewi .

Problem: How does V actually get cnewi ?

Solution: Append public-key encryption keypairs to address keypairs.

U encrypts cnewi against V ’s public encryption key.

U appends the result to txPour.

Abhiram Kothapalli (CMU) Zerocash Explained 17 / 25

How to Actually Send Coins

Suppose user U posts txPour = (rt, snold, cmnew
1 , cmnew

2 , π) on the
ledger.

User V can spend (or transfer) the value embedded in cmnew
i so long

as it can furnish the corresponding secret key and private coin cnewi .

Problem: How does V actually get cnewi ?

Solution: Append public-key encryption keypairs to address keypairs.

U encrypts cnewi against V ’s public encryption key.

U appends the result to txPour.

Abhiram Kothapalli (CMU) Zerocash Explained 17 / 25

How to Actually Send Coins

Suppose user U posts txPour = (rt, snold, cmnew
1 , cmnew

2 , π) on the
ledger.

User V can spend (or transfer) the value embedded in cmnew
i so long

as it can furnish the corresponding secret key and private coin cnewi .

Problem: How does V actually get cnewi ?

Solution: Append public-key encryption keypairs to address keypairs.

U encrypts cnewi against V ’s public encryption key.

U appends the result to txPour.

Abhiram Kothapalli (CMU) Zerocash Explained 17 / 25

Handling Public Outputs

Construction so far allows for private minting, merging, and splitting
of coins.

Problem: How to lower ZEC back into the BTC?

Solution: Modify the POUR statement.

Allow user V to specify vpub such that

vnew1 + vnew2 + vpub = vold

Additionally allow V to specify variable info that specifies a
non-private address to deposit vpub BTC.

Abhiram Kothapalli (CMU) Zerocash Explained 18 / 25

Handling Public Outputs

Construction so far allows for private minting, merging, and splitting
of coins.

Problem: How to lower ZEC back into the BTC?

Solution: Modify the POUR statement.

Allow user V to specify vpub such that

vnew1 + vnew2 + vpub = vold

Additionally allow V to specify variable info that specifies a
non-private address to deposit vpub BTC.

Abhiram Kothapalli (CMU) Zerocash Explained 18 / 25

Handling Public Outputs

Construction so far allows for private minting, merging, and splitting
of coins.

Problem: How to lower ZEC back into the BTC?

Solution: Modify the POUR statement.

Allow user V to specify vpub such that

vnew1 + vnew2 + vpub = vold

Additionally allow V to specify variable info that specifies a
non-private address to deposit vpub BTC.

Abhiram Kothapalli (CMU) Zerocash Explained 18 / 25

Handling Public Outputs

Construction so far allows for private minting, merging, and splitting
of coins.

Problem: How to lower ZEC back into the BTC?

Solution: Modify the POUR statement.

Allow user V to specify vpub such that

vnew1 + vnew2 + vpub = vold

Additionally allow V to specify variable info that specifies a
non-private address to deposit vpub BTC.

Abhiram Kothapalli (CMU) Zerocash Explained 18 / 25

Handling Public Outputs

Construction so far allows for private minting, merging, and splitting
of coins.

Problem: How to lower ZEC back into the BTC?

Solution: Modify the POUR statement.

Allow user V to specify vpub such that

vnew1 + vnew2 + vpub = vold

Additionally allow V to specify variable info that specifies a
non-private address to deposit vpub BTC.

Abhiram Kothapalli (CMU) Zerocash Explained 18 / 25

Non-Malleability

Problem: How do we prevent miners from modifying info variable before
posting transaction?

Solution: Modify the POUR statement to include one-time digital
signatures.

Abhiram Kothapalli (CMU) Zerocash Explained 19 / 25

Non-Malleability

Problem: How do we prevent miners from modifying info variable before
posting transaction?

Solution: Modify the POUR statement to include one-time digital
signatures.

Abhiram Kothapalli (CMU) Zerocash Explained 19 / 25

1 The Decentralized Anonymous Payment Scheme Functionality

2 Constructing a Decentralized Anonymous Payment Scheme

3 Zerocash in the Wild

Abhiram Kothapalli (CMU) Zerocash Explained 20 / 25

Zcash

Zcash is worth $2.08B, and is the canonical example of the commercial
viability of advanced cryptography.

Abhiram Kothapalli (CMU) Zerocash Explained 21 / 25

Zero-Knowledge Proofs beyond Zcash

Abhiram Kothapalli (CMU) Zerocash Explained 22 / 25

A Research Boom in zkSNARK Technology

MPC protocols designed just to decentralize the Zcash trusted setup.

Initiated an entire line of research in zkSNARKs without a fully
trusted setup [WTS+18, Set20, MBKM19].

Revived interest in recursive
zkSNARKs [Val08, BBB+18, KST21, BGH]

Abhiram Kothapalli (CMU) Zerocash Explained 23 / 25

A Research Boom in zkSNARK Technology

MPC protocols designed just to decentralize the Zcash trusted setup.

Initiated an entire line of research in zkSNARKs without a fully
trusted setup [WTS+18, Set20, MBKM19].

Revived interest in recursive
zkSNARKs [Val08, BBB+18, KST21, BGH]

Abhiram Kothapalli (CMU) Zerocash Explained 23 / 25

A Research Boom in zkSNARK Technology

MPC protocols designed just to decentralize the Zcash trusted setup.

Initiated an entire line of research in zkSNARKs without a fully
trusted setup [WTS+18, Set20, MBKM19].

Revived interest in recursive
zkSNARKs [Val08, BBB+18, KST21, BGH]

Abhiram Kothapalli (CMU) Zerocash Explained 23 / 25

A Research Boom in zkSNARK Technology

MPC protocols designed just to decentralize the Zcash trusted setup.

Initiated an entire line of research in zkSNARKs without a fully
trusted setup [WTS+18, Set20, MBKM19].

Revived interest in recursive
zkSNARKs [Val08, BBB+18, KST21, BGH]

Abhiram Kothapalli (CMU) Zerocash Explained 23 / 25

Clarifying Questions (Paraphrased)

A minting transaction is a tuple (v , k, s, cm), where cm is com(v , k).
How does a miner determine that the value v BTC is correct?

POUR can split coins. Can it also merge them?

Could the system be extended similar to the way Ethereum was
created to allow for arbitrary private computation? [KMS+16]

Abhiram Kothapalli (CMU) Zerocash Explained 24 / 25

Discussion Questions (Paraphrased)

Is Zerocash ethical?

What incentivizes the escrow pool to not abort the protocol and keep
all the money?

What is a good way of finding other people’s address public keys in a
privacy preserving manner?

The authors mention that Zerocash could be deployed on top of any
ledger, including a central bank’s. How would such a deployment
differ from a deployment over Bitcoin?

By transferring a Bitcoin into a minted coin, the user needs to
transfer it’s bitcoin to a backing escrow pool first. Will this bring
some security risks?

Abhiram Kothapalli (CMU) Zerocash Explained 25 / 25

Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more.
In IEEE S&P, 2018.

Sean Bowe, Jack Grigg, and Daira Hopwood.
Halo: Recursive proof composition without a trusted setup.
IACR Cryptol. ePrint Arch., 2019.

Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and
Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts.
In IEEE S&P, 2016.

Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla.
Nova: Recursive zero-knowledge arguments from folding schemes.
Cryptology ePrint Archive, Report 2021/370, 2021.
https://ia.cr/2021/370.

Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.

Abhiram Kothapalli (CMU) Zerocash Explained 25 / 25

https://ia.cr/2021/370

Sonic: Zero-knowledge SNARKs from linear-size universal and
updatable structured reference strings.
In CCS, 2019.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation.
In IEEE S&P, 2013.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from Bitcoin.
In IEEE S&P, 2014.

Srinath Setty.
Spartan: Efficient and general-purpose zkSNARKs without trusted
setup.
In CRYPTO, 2020.

Paul Valiant.
Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency.

Abhiram Kothapalli (CMU) Zerocash Explained 25 / 25

In TCC, 2008.

Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and
Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup.
In IEEE S&P, 2018.

Abhiram Kothapalli (CMU) Zerocash Explained 25 / 25

	The Decentralized Anonymous Payment Scheme Functionality
	Constructing a Decentralized Anonymous Payment Scheme
	Zerocash in the Wild

